
Design and Analysis of Optimal Task-Processing Agents

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in the Graduate School of The Ohio State

University

By

Theodore P. Pavlic, B.S., M.S.

Graduate Program in Electrical and Computer Engineering

The Ohio State University

2010

Dissertation Committee:

Kevin M. Passino, Advisor

Andrea Serrani

Atilla Eryilmaz

c© Copyright by

Theodore P. Pavlic

2010

Abstract

This dissertation is given in two parts followed by concluding remarks. The first

three chapters describe the generalization of optimal foraging theory for the design of

solitary task-processing agents. The following two chapters address the coordinated

action of distributed independent agents to achieve a desirable global result. The

short concluding part summarizes contributions and future research directions.

Optimal foraging theory (OFT) uses ecological models of energy intake to predict

behaviors favored by natural selection. Using models of the long-term rate of energetic

gain of a solitary forager encountering a variety of food opportunities at a regular rate,

it predicts characteristics of optimal solutions that should be expressed in nature.

Several engineered agents can be modeled similarly. For example, an autonomous air

vehicle (AAV) that flies over a region encounters targets randomly just as an animal

will encounter food as it travels. OFT describes the preferences that the animal is

likely to have due to natural selection. Thus, OFT applied to mobile vehicles describes

the preferences of successful vehicle designs.

Although OFT has had success in existing engineering applications, rate max-

imization is not a good fit for many applications that are otherwise analogous to

foraging. Thus, in the first part of this dissertation, the classical OFT methods are

rediscovered for generic optimization objectives. It is shown that algorithms that are

computationally equivalent to those inspired by classical OFT can perform better in

ii

realistic scenarios because they are based on more feasible optimization objectives. It

is then shown how the design of foraging-like algorithms provides new insight into be-

haviors observed and expected in animals. The generalization of the classical methods

extracts fundamental properties that may have been overlooked in the biological case.

Consequently, observed behaviors that have been previously been called irrational are

shown to follow from the extension of the classical methods.

The second part of the dissertation describes individual agent behaviors that col-

lectively result in the achievement of a global optimum when the distributed agents

operate in parallel. In the first chapter, collections of agents that are each similar

to the agents from the early chapters are considered. These agents have overlapping

capabilities, and so one agent can share the task processing burden of another. For

example, an AAV patrolling one area can request the help of other vehicles patrolling

other areas that have a sparser distribution of targets. We present a method of vol-

unteering to answer the request of neighboring agents such that sensitivity to the

relative loading across the network emerges. In particular, agents that are relatively

more loaded answer fewer task-processing requests and receive more answers to their

own requests. The second chapter describes a distributed numerical optimization

method for optimization under inseparable constraints. Inseparable constraints typ-

ically require some direct coordination between distributed solver agents. However,

we show how certain implementations allow for stigmergy, and so far less coordina-

tion is needed among the agents. For example, intelligent lighting, which maintains

illumination constraints while minimizing power usage, is one application where the

distributed algorithm can be applied directly.

iii

This dissertation is written in memory of my brother Kenny, who I miss dearly. I

know no one else who was loved by so many, and I know no one else who deserved

his fate less.

iv

Acknowledgments

First, I give thanks to my parents, Paul and Eileen, and my partner Jessie; they

have always been supportive and understanding, even when research has reduced the

frequency of contact with them. Any success that I have today could not have been

possible without them.

My adviser, Professor Kevin M. Passino, deserves thanks not only for his wisdom

and guidance but also for his unending patience with me. Through him, I have not

only learned engineering, but I have become a better writer and overall thinker. He

has strengthened my understanding of how to research effectively and continues to

serve as an important role model for me.

Any accurate understanding that I have of behavioral ecology is entirely due to

Professor Thomas A. Waite. The tangible and intangible benefits of collaboration

with him are too numerous to list. I am an interloper in his field, and he has not

only tolerated my intrusion but has welcomed me and provided me with instructions

on how I might proceed deeper into new spaces. Exposure to him and his colleagues

has left me in awe of the ecological adventures that are common in his field. One

colleague of his who also deserves special attention is Ian M. Hamilton; I have been

successful contributing to literature in behavioral ecology not in small part due to his

guidance and suggestions.

v

Finally, I thank the other members of my dissertation committee, including An-

drea Serrani and Atilla Eryilmaz, for taking the time to evaluate my work. Over the

years, I have valued Professor Serrani’s persepective on the personal and professional

complications of doing academic research in engineering.

vi

Vita

February 28, 1981 . Born - Columbus, OH, USA

June 2004 . B.S., Elec. & Comp. Engineering

June 2007 . M.S., Elec. & Comp. Engineering

2004–present . Dean’s Distinguished Univ. Fellow,
The Ohio State University

2006–2007 . NSF GK-12 Fellow,
The Ohio State University

2002, 2003 .Analog Design Intern,
National Instruments, Austin, Texas

2001 .Core Systems Developer,
IBM Storage, RTP, North Carolina

Publications

T.P. Pavlic and K.M. Passino. When rate maximization is impulsive. Behavioral

Ecology and Sociobiology, 64(8):1255–1265. August 2010.
DOI:10.1007/s00265-010-0940-1

T.P. Pavlic and K.M. Passino. The sunk-cost effect as an optimal rate-maximizing

behavior. Acta Biotheoretica. 2010. In press. DOI:10.1007/s10441-010-9107-8

T.P. Pavlic and K.M. Passino. Foraging theory for autonomous vehicle speed choice.

Engineering Applications of Artificial Intelligence, 22(3):482–489, April 2009.
DOI:10.1016/j.engappai.2008.10.017

R.J. Freuler, M.J. Hoffmann, T.P. Pavlic, J.M. Beams, J.P. Radigan, P.K. Dutta,

J.T. Demel, and E.D. Justen. Experiences with a comprehensive freshman hands-on

vii

http://dx.doi.org/10.1007/s00265-010-0940-1
http://dx.doi.org/10.1007/s10441-010-9107-8
http://dx.doi.org/10.1016/j.engappai.2008.10.017

course – designing, building, and testing small autonomous robots. In Proceedings of
the 2003 American Society for Engineering Education Annual Conference & Exposi-

tion, 2003.

Fields of Study

Major Field: Electrical and Computer Engineering

viii

Table of Contents

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Tables . xii

List of Figures . xiii

I Behaviors of a Solitary Optimal Task-Processing Agent 1

1. Generalizing Foraging Theory for Analysis and Design 5

1.1 Model of an Autonomous Task-processing Agent 8

1.1.1 Background: Foraging-inspired Task-processing Agents . . . 9
1.1.2 Classical Optimal Foraging Objective 15

1.1.3 New Objectives for Finite-event Scenario 17
1.2 A Graphical Optimization Approach 24

1.2.1 Optimization of the Classical Objective 25
1.2.2 Optimal Behaviors from Alternate Objectives 27

1.3 An Analytical Optimization Approach 34
1.3.1 Characterization of Optimal Behaviors 35

1.3.2 Motivating Interpretations 36
1.3.3 Algorithms for Finding an Optimal Generalized Foraging Be-

havior . 39
1.4 Examples: Theory and Application 47

1.4.1 Comparison of Theoretical Results 47

ix

1.4.2 Simulation Results . 50
1.5 Conclusions . 56

2. When Rate Maximization Is Impulsive 58

2.1 Background . 59
2.1.1 Impulsiveness Without Discounting 59

2.1.2 A Graph of the Prey Model 60
2.1.3 Justification for Adaptive Rate-maximization Model 63

2.1.4 Other Ostensible Violations of Rate Maximization 63
2.2 Model . 65

2.2.1 State-based Real-time Adaptive Rate-maximization 65

2.2.2 State-based Real-time Adaptive Model Consistent with DRM 68
2.3 Results . 70

2.3.1 Simulation: Simultaneous Encounters Lead to Suboptimality 70
2.3.2 Simulation: Pre-experiment Feeding Restores Optimality . . 73

2.3.3 Simulation: Equal-opportunity Foragers and Simultaneous
Encounters . 75

2.3.4 Simulation: DRM-inspired Rule has DRM-like Preferences . 77
2.4 Discussion . 77

2.4.1 Binary-choice Impulsiveness can be Sequentially Optimal in
Nature . 77

2.4.2 A Mechanism Consistent with Digestive Rate Model 80

3. The Sunk-cost Effect as an Optimal Rate-maximizing Behavior 82

3.1 Classical Optimal Foraging Theory 84

3.2 OFT Criticism and Explicit Processing Costs 85

3.3 Graphical Optimization and Long Residence Times 86
3.4 The Sunk-cost Effect . 89

3.4.1 Initial Costs: Recognition, Acquisition, Reconnaissance . . . 89
3.4.2 Human and Nonhuman Examples 92

3.4.3 Escalation Behavior . 96
3.5 Conclusions . 100

II Optimal Distributed Task Processing 102

4. Cooperative Task Processing . 106

4.1 Task-Processing Network . 109
4.2 Cooperation Game Among Selfish Agents 112

x

4.3 Distributed Computation of the Nash Equilibrium 115
4.3.1 Conditions for Distributed Convergence 118

4.3.2 Interpretations . 124
4.4 Simulation of Cooperative AAV Scenario 126

4.5 Conclusion . 127

5. The MultiIFD as Distributed Gradient Descent for Constrained Optimiza-
tion . 129

5.1 The Optimization Problem . 131
5.1.1 Characterization of Optimal Solutions 132

5.1.2 Example Applications . 133

5.1.3 Conventional Dual-Space Optimization Methods 148
5.2 Parallelizable Primal-Space Algorithm 151

5.2.1 Lighting Agents . 152
5.2.2 Motivation: Optimization by Normal Support of Variable

Gravity . 156
5.2.3 The MultiIFD: Optimization Under Uniform Gravity 157

5.2.4 Stability of the MultiIFD 159
5.3 Results . 163

5.3.1 Simulation Results . 163
5.3.2 Experimental Results . 165

III Summary and Conclusions 170

6. Contributions . 172

6.1 Generalized Solitary Optimal Task-Processing Agents 172
6.2 Ecological Rationality . 175

6.2.1 Computationally Simple Implementations and Impulsiveness 176

6.2.2 Over-processing of Tasks . 178
6.3 Nash Optimal Cooperative Task-Processing 179

6.4 Pareto Optimal Constrained Distributed Resource Allocation . . . 181

7. Future Directions . 184

7.1 Generalized Task-Processing Agents 184

7.2 Cooperative Task-Processing Agents 185
7.3 Distributed Optimization with Constraints 186

Bibliography 188

xi

List of Tables

Table Page

1.1 Sample optimization results for a generalized forager. 48

1.2 Results from prey-model inspired mobile agent simulation. 52

xii

List of Figures

Figure Page

1.1 Graphical optimization of an advantage-to-disadvantage function . . . 25

1.2 Graphical optimization of classical optimization objective. 26

1.3 Time-discounted net-gain optimization. 31

1.4 Optimization based on efficiency. 33

1.5 Graphical summary of prey model result. 38

2.1 Graphical summary of prey model result. 62

2.2 Adaptive long-term maximizer trajectory. 67

2.3 Simulation of an adaptive and impulsive foraging behavior facing dif-
ferent encounter processes. 72

2.4 Simulation of an impulsive foraging behavior after initial ad libitum

feeding period. 74

2.5 Equal-opportunity behavior facing simultaneous encounters. 76

2.6 Simulation of a DRM-inspired foraging behavior that has DRM-like

results. 78

3.1 Effect of searching on optimal patch residence times. 87

3.2 Initially negative gain function. 91

3.3 Optimal exploitation time for patch type i with acquisition cost ci. . 94

xiii

3.4 Analysis of positive constant gain function. 97

3.5 Analysis of negative constant gain function. 98

3.6 Initially negative concave gain function has latest escalation behavior. 99

4.1 Simple flexible manufacturing system example. 110

4.2 Task-processing network formed by autonomous air vehicles. 111

4.3 Sample stabilizing payment functions. 119

4.4 Many-agent task-processing network with stable topology. 125

4.5 AAV optimal cooperation willingness as encounter rates vary. 126

5.1 Graphical depiction of the IFD solution. 135

5.2 Graphical depiction of price-minimizing IFD solution. 139

5.3 Top view of prototypical lighting system. 147

5.4 Phase-plane trajectories of two-light–two-sensor simulation. 163

5.5 Statistics from a lighting simulation with eight lights and eight sensors. 164

5.6 Experimental lighting testbed. 166

5.7 Experimental results for distributed power minimization. 167

5.8 Experimental results for distributed power minimization with over-

shoot mitigation. 168

5.9 Experimental results for centralized power minimization with chatter-
ing mitigation. 169

xiv

Part I: Behaviors of a Solitary

Optimal Task-Processing Agent

1

Foraging theory has been the inspiration for several decision-making algorithms

for task-processing agents facing random environments. As nature selects for foraging

behaviors that maximize lifetime calorie gain or minimize starvation probability, en-

gineering designs are favored that maximize returned value (e.g., profit) or minimize

the probability of not reaching performance targets. In this part of the dissertation,

we investigate how foraging theory can be expanded so that it can be used in a wider

range of design applications. Then we show how applying foraging theory to a gen-

eral space of solitary-agent optimization problems has revealed new insights into the

biological world.

Prior foraging-inspired designs are direct applications of classical optimal foraging

theory (OFT). Here, in Chapter 1, we describe a generalized optimization framework

that encompasses the classical OFT model, a popular competitor, and several new

models introduced here that are better suited for some task-processing applications

in engineering. These new models merge features of rate maximization, efficiency

maximization, and risk-sensitive foraging while not sacrificing the intuitive character

of classical OFT. However, the central contributions of this chapter are analytical

and graphical methods for designing decision-making algorithms guaranteed to be

optimal within the framework. Thus, we provide a general modeling framework for

solitary agent behavior, several new and classic examples that apply to it, and generic

methods (some of which are described in more detail in Section 1.3.3) for design and

analysis of optimal task-processing behaviors that fit within the framework. Our

results extend the key mathematical features of optimal foraging theory to a wide

range of other optimization objectives in biological, anthropological, and technological

contexts. This work was originally presented by Pavlic and Passino [84].

2

Although optimal foraging theory predicts that natural selection should favor

animal behaviors that maximize long-term rate of gain, behaviors observed in the

laboratory tend to be impulsive. In binary-choice experiments, despite the long-

term gain of each alternative, animals favor short handling times. Most explanations

of this behavior suggest that there is hidden rationality in impulsiveness. Instead,

in Chapter 2, we suggest that simultaneous and mutually exclusive binary-choice

encounters are often unnatural and thus immune to the effects of natural selection.

Using a simulation of an imperfect forager, we show how a simple strategy (i.e. an

intuitive model of animal behavior) that maximizes long-term rate of gain under

natural conditions appears to be impulsive under operant laboratory conditions. We

then show how the accuracy of this model can be verified in the laboratory by biasing

subjects with a short pre-experiment ad libitum high-quality feeding period. We also

show a similar behavioral mechanism results in diet preferences that are qualitatively

consistent with the digestive rate model of foraging (i.e., foraging under digestive rate

constraints). This work was originally presented by Pavlic and Passino [82]; the germ

of the work was a simple decision-making heuristic for real-time control of a solitary

task-processing agent.

Optimal foraging theory has been criticized for underestimating patch exploitation

time. However, as we show in Chapter 3, proper modeling of costs not only answers

these criticisms, but it also explains apparently irrational behaviors like the sunk-

cost effect. When a forager is sure to experience high initial costs repeatedly, the

forager should devote more time to exploitation than searching in order to minimize

the accumulation of said costs. Thus, increased recognition or reconnaissance costs

lead to increased exploitation times in order to reduce the frequency of future costs,

3

and this result can be used to explain paradoxical human preference for higher costs.

In fact, this result also provides an explanation for how continuing a very costly

task indefinitely provides the optimal long-term rate of gain; the entry cost of each

new task is so great that the forager avoids ever returning to search. In general,

apparently irrational decisions may be optimal when considering the lifetime of a

forager within a larger system. This work was originally presented by Pavlic and

Passino [83]. Expanding the parameter space to include negative costs was necessary

to encompass general objective functions seen in engineering applications.

4

Chapter 1: Generalizing Foraging Theory for Analysis and

Design

Foraging theory has been a source of inspiration for optimization [78, 79], au-

tonomous vehicle control [7, 9, 81, 97], and distributed resource allocation [8, 31,

32, 95]. In each case, automated agents prosecute tasks that are analogous to food

encountered by animals in the environment. Just like food, tasks can be scarce, are

encountered randomly, carry a random handling time, and carry a random value that

is analogous to calorie content. Additionally, when an agent chooses to prosecute a

task, it may face increased risk of harm during the handling of the task (e.g., from

fatigue or from forces analogous to predation). Just as natural selection will favor

animal behaviors that maximize lifetime calorie content or minimize the probability

of starvation, engineering design favors decision-making algorithms that maximize

accumulated value or minimize the probability of not reaching performance targets.

Thus, by translating from biological currencies (e.g., calories) to engineering curren-

cies (e.g., dollars), foraging behaviors shown to be advantageous in nature become

optimal algorithms for engineered agents in random environments.

Unfortunately, although an autonomous agent may be easily viewed as a forager,

the objectives favored by natural selection are not necessarily good models for op-

timization in engineering. For example, an eagle in flight may select from prey it

5

encounters so that it maximizes calories over its lifetime. However, an autonomous

air vehicle (AAV) with a finite number of packages to deposit on targets has a much

shorter time horizon and thus will prioritize its targets differently. Nevertheless, the

simplicity of the intuitive results from optimal foraging theory (OFT) makes it at-

tractive for the design of autonomous decision-making algorithms. In this chapter,

we identify the key structures responsible for that simplicity so that optimization ob-

jectives that better fit engineering scenarios can lead to similar foraging-like designs.

Thus, this chapter extends the work of Andrews et al. [9] who applied the principle

results of classical optimal foraging theory directly to AAV cases.

In particular, we describe a generalized framework for the analysis and design of

optimal autonomous behaviors of solitary task-processing agents. We also give al-

gorithms for designing behaviors within this framework that are guaranteed to meet

sufficiency conditions for optimality. Our framework encompasses two popular models

of optimal foraging, which include the prey and patch models that inspired existing

solitary agent designs [7, 9, 97]. Four additional models that also fit within the frame-

work are introduced to handle cases that are unfit for classical foraging analysis but

are applicable for engineered agent design. Thus, the framework and the generalized

optimality algorithms allow for the rapid development of optimal behaviors in new

solitary agent contexts (e.g., more applicable for engineering design than science).

However, they also provide methods for comparing behaviors that are optimal under

different utility functions. For example, we show that when finite-lifetime success

thresholds are introduced into optimization objectives, the resulting behaviors have

the same form of classical OFT but prioritize targets in an order that varies with the

size of the success threshold.

6

The chapter is structured as follows. In Section 1.1, we introduce the Markov

renewal–reward process that characterizes a generic solitary task-processing agent and

define the advantage-to-disadvantage function, which is an abstract optimization ob-

jective that encapsulates several aspects of existing foraging theory. We also describe

the models used in classical OFT and show that their objectives have the structure of

an advantage-to-disadvantage function. Additionally, we provide motivating exam-

ples from the literature of existing applications of foraging theory to engineering. In

Section 1.1.3, we define four new optimization objectives that have an advantage-to-

disadvantage structure. Each of these new objectives models a special finite-lifetime

task-processing agent with an intake threshold for success (e.g., a military autonomous

air vehicle doing automated target processing with a finite arsenal that must reach an

accumulated target value by the time its arsenal is depleted). Two of these finite-event

models are inspired by classical rate maximization [23, 24, 112], and two are inspired

by efficiency maximization. These finite-lifetime objectives may better fit behaviors

for autonomous agents that have short missions than the classical OFT that has in-

spired existing decision-making algorithms. In Section 1.2, a graphical approach to

multivariate optimization of advantage-to-disadvantage functions is discussed, and a

more rigorous quantitative approach is explored in Section 1.3 (i.e., algorithms are

given in Section 1.3.3 that are guaranteed to find an optimal task-processing behav-

ior for particular scenarios). A summarized comparison of optimal behaviors found

by those algorithms for each of the six example advantage-to-disadvantage functions

is given in Section 1.4. Additionally, simulation results are given that show how

behaviors developed with the methods in this chapter have better performance in

finite-lifetime scenarios when compared to conventional foraging-inspired task-choice

7

behaviors. Finally, some concluding remarks and suggestions for future research are

given in Section 1.5.

1.1 Model of an Autonomous Task-processing Agent

In this section, we present a model of a task-processing agent and show how it

generalizes several foraging-inspired optimization problems from robotics and com-

puter science. The summary of the bio-inspired engineering applications is given in

Section 1.1.1, and the related optimization problem from classical foraging theory is

presented in Section 1.1.2. Then, in Section 1.1.3, we present four new optimization

objectives that are better fit to model desirable behaviors for task-processing agents

with finite lifetimes. As these objectives each fit within the generalized framework,

they can be solved with the generalized methods described in Section 1.2 and 1.3.

Moreover, conversion from a classical OFT-inspired decision-making implementation

involves little more than a change of parameters. This conversion process is empha-

sized in Section 1.4, which compares the results of applying the analytical methods

in Section 1.3 to each example optimization objectives described here.

Consider an autonomous agent that can complete n ∈ {1, 2, . . . } types of tasks.

For task type i ∈ {1, 2, . . . , n}, the agent processes pi ∈ [0, 1] fraction of encoun-

tered type-i tasks and spends an average of τi ≥ 0 time processing each selected

type-i task. So task-processing behavior is completely characterized by vectors ~p ,

[p1, p2, . . . , pn]
⊤ and ~τ , [τ1, τ2, . . . , τn]

⊤. Next, let R be the set of the real num-

bers, R≥0 be the set of nonnegative real numbers, and R≥0 , R≥0 ∪ {∞}. For each

type i ∈ {1, 2, . . . , n}, constraints on feasible behaviors are modeled with constants

8

p−i , p
+
i ∈ [0, 1] and τ−i , τ+i ∈ R≥0 so that the feasible set of behaviors is

F , {(~p, ~τ) ∈ [0, 1]n × R
n
≥0 : p

−
i ≤ pi ≤ p+i , τ

−
i ≤ τi ≤ τ+i , i ∈ {1, 2, . . . , n}}, (1.1)

which is a convex separable polyhedron. The optimal behavior will maximize the

generic advantage-to-disadvantage function [80]

J(~p, ~τ) ,
A(~p, ~τ)

D(~p, ~τ)
,

a+
n∑

i=1

piai(τi)

d+
n∑

i=1

pidi(τi)
(1.2)

where the a ∈ R and d ∈ R are constants and ai : [τ
−
i , τ+i] 7→ R and di : [τ

−
i , τ+i] 7→ R

are functions of time τi associated with type i ∈ {1, 2, . . . , n}.

1.1.1 Background: Foraging-inspired Task-processing Agents

OFT was popularized by Stephens and Krebs [112]. It is based on the work of

Charnov [23], and recently updated results and new applications are summarized

by Stephens et al. [115]. OFT assumes that a solitary forager goes through Markov

renewal cycles of searching for and responding to foraging opportunities. At every en-

counter, the forager’s energy stores will rise or fall based on the forager’s behavior, the

environment, and the encountered item. In particular, each prey type i ∈ {1, 2, . . . , n}

is encountered with rate λi, and those encounters that are chosen for processing have

an average gain gi(τi) and average cost ci(τi). During the search time between en-

counters, the forager pays cost cs/λ where λ , λ1 + λ2 + · · · + λn (i.e., 1/λ is the

average time between encounters, and cs is the cost paid per unit time searching).

If the forager is viewed as an autonomous task-processing agent, then the prey it

encounters are the tasks it must choose whether and how long to process. Stephens

and Krebs [112] describe two popular special cases of the general problem:

9

(i) The prey model. In this case, it is assumed that tasks (i.e., prey) come in lumps

that have fixed processing times (i.e., processing-time bounds are such that

τ−i = τ+i > 0 for each type i). The agent (i.e., forager) must only select whether

to process or ignore the task.

(ii) The patch model. In this case, it is assumed that the agent processes every

encountered task (i.e., preference bounds p−i = p+i = 1 for each type i), but

each encountered task is a clumped patch of prey with decreasing marginal

returns (e.g., due to depletion of prey within the patch). Hence, the agent must

decide how long to process each task.

As described in the selection of examples below, these ecological models of a solitary

forager have been used to inspire optimal designs of autonomous mobile vehicles [7, 9,

81], resource allocation strategies for distributed temperature regulation [97], and web

sites that attract attention of humans on the Internet [87–89]. In this work, we show

how the forager is a special case of a more general task-processing framework. The

solutions we provide for this framework apply to a wider set of applications than the

original foraging and foraging-inspired cases. Moreover, this generalized framework

can be used as a tool to compare the operation and efficacy of different policies.

Autonomous mobile vehicles

Andrews et al. [9] show how both the prey and patch models described by Stephens

and Krebs [112] can be used to model an AAV (e.g., for military or surveillance

applications). In particular, they consider a Dubins’ car [28] model of an air vehicle

(e.g., a fixed-wing vehicle that travels at a constant speed and has a maximum turn

radius). As it sweeps over the ground, an on-board sensor detects relatively slow

10

targets below the vehicle. The agent responds to each target detection either with

ignorance or by choosing to complete a task for a certain amount of time. Some tasks

have a fixed processing time (e.g., dropping bombs or food), and other tasks can be

processed continuously by the agent (e.g., reconnaissance). Processing each task is

costly to the agent (e.g., due to additional fuel use), but completing task returns

a value to the agent’s designer (e.g., dollars of profit or some currency encoding

priority).

Just as prey can be grouped into types based on returned net energy gain and han-

dling time, these tasks can be grouped into n types based on net value gi(τi)− ci(τi)

and processing time τi for each type i ∈ {1, 2, . . . , n}. Furthermore, Andrews et al. [9]

use results from Stone [116] to show that if a vehicle encounters a cluster (i.e.,

patch) of high-value targets that it may process continuously, the accumulated value

gi(τi) − ci(τi) of processing the targets in patch type i ∈ {1, 2, . . . , n} over time τi

is the area under a decaying exponential (i.e., the density of targets in the patch

decays due to the depletion of remaining tasks after processing). Thus, patches of

tasks have diminishing marginal returns just like patches of prey in foraging models.

So descriptions of optimal animal foraging behavior are also recipes for optimal ve-

hicle task-type (i.e., prey model) and processing-length (i.e., patch model) policies.

Andrews et al. use flying-vehicle simulations to verify that policies generated by both

the prey model and the patch model perform well in stochastic environments; how-

ever, the analogy can be applied to autonomous underwater, outer-space, or ground

vehicles as well. For example, a domestic autonomous ground vehicle that can collect

trash, clean floors, and organize furniture faces random tasks in its environment that

11

it must choose whether to process or momentarily ignore while searching for a more

valuable task.

On-line implementation of OFT-inspired behaviors: In both the prey model

application described by Andrews et al. [9] as well as the temperature regulation exam-

ple below, the encounter rates with each task type must be estimated before the prey

model algorithm is used at each encounter to determine whether tasks should be pro-

cessed or ignored. When encounter rates are available, the prey model algorithm can

be completed in linear time that scales with the number of task types. Additionally,

the ratio of the number of encounters with a type to the total time will asymptoti-

cally converge to the true encounter rate in the environment, and so a simple method

exists for estimating the encounter rate. Although this on-line implementation of

the prey model is relatively simple to implement, Pavlic and Passino [82] present a

much simpler decision-making heuristic that converges to prey-model-optimal behav-

ior without the need for encounter rate estimation. In particular, they show that an

asymptotically optimal forager needs only to compare its present accumulated-gain–

total-time ratio to the gi/τi ratio of each encountered task to determine whether the

task should be processed or ignored. This heuristic is the natural extension of the

conventional patch model implementation to the prey model case. Thus, on-line im-

plementations of OFT-inspired decision-making are suitable for autonomous agents

with strict timing requirements and simple computational abilities.

Resource allocation: distributed temperature regulation

12

Quijano et al. [97] develop a method for applying the prey model to distributed

resource allocation, and they test their strategies in a working physical tempera-

ture control experiment. Their apparatus consists of eight zones that each include a

temperature sensor and a heating element. The zones are arranged so that there is

significant cross coupling (i.e., heat from one zone causes the temperature to rise not

only at its local sensor but also on the sensors of nearby zones). This apparatus could

be a model of a large room with multiple temperature actuators or a building with

multiple rooms. Assuming that at most one heating element can be energized at a

time, Quijano et al. design a policy for a centralized controller that determines which

if any heating element should be activated at each time so that all zones achieve a

single desired temperature.

This temperature regulation problem connects to foraging theory by using a “for-

aging for error” method like the one described by Passino, Passino [78, 79]. At each

instant of time, there is an error associated with each zone representing the differ-

ence between the desired temperature and the temperature at its sensor. Quijano

et al. [97] create an error index that maps all errors to a finite set of integers; that is,

they generate a mapping i(e) from error magnitude e ∈ R to error type i ∈ {1, n}.

For each error type i, they also associate a value gi and a heating time τi that both

are monotonically increasing with error magnitude (i.e., a higher error magnitude is

associated with a higher value and a higher heating time). The centralized controller

randomly chooses which zone to monitor at each time. Hence, it encounters each

error type just as a forager encounters prey types. At each encounter with error e, it

identifies the error type i(e) and the associated value gi(e) and heating time τi(e) and

uses the prey model to determine whether to activate the zone for the τi(e) heating

13

time or to move to the next zone. Quijano et al. actually implement four such error

foragers simultaneously and show that the resulting strategy achieves uniform tem-

perature regulation across all zones and rejects temperature disturbances even under

delays and sensor noise.

Similar foraging-inspired resource-allocation algorithms could be used on mobile

agents deployed on factory floors that must balance queues of raw materials. If a raw

material is loaded into a physical queue from one end only, the queue will frequently

be overloaded on that end. A mobile robot that must move around the queue to shift

resources from one location to another could prioritize its movements based on the

height of each location in the queue compared to the average height. Those areas

with the greatest off-average error would be highest value and thus would attract the

greatest attention from the re-allocation agent.

Web design

Pirolli [88] gives a summary of so-called “information foraging” analyses of human

behavior on the Internet that are based on classical optimal foraging theory. In one

example, humans are viewed as foragers that accumulate information from websites

that are viewed as patches of information, and it is assumed that humans will allocate

time in each web patch according to optimal foraging theory. Hence, web developers

must organize content on their web pages in order to maximize the time an optimal

information forager should spend using their sites. For example, one of the key results

of the patch model of optimal foraging theory is that foragers will spend less time

in all patches if the average time between patch encounters decreases. In particular,

the forager leaves each patch when the patch marginal returns fall below a particular

threshold, and that threshold increases as the search time between patches decreases.

14

Likewise, if fast search engines return several relevant responses to a search query,

the information-foraging human will spend very little time visiting each site before

moving to the next site in the search results. Consequently, web sites designed to

retain visitors for as long as possible (e.g., to maximize exposure to advertisements)

must dynamically arrange content based on the search request so that the site sustains

a high level of marginal returns of relevant information.

1.1.2 Classical Optimal Foraging Objective

In Section 1.1.1, we described several examples of how OFT has been used in tech-

nological design of autonomous vehicles, resource allocation algorithms, and dynamic

web sites. Here, we summarize the classical OFT optimization objective and show

how it is a special case of the advantage-to-disadvantage function. We also show how

a related but different optimization objective favored by some behavioral ecologists is

also an advantage-to-disadvantage function. Later, in Section 1.1.3, we present other

optimization objectives that are better suited for engineering applications (e.g., AAV

delivery schedules when there are a finite number of packages to deliver to a random

set of targets).

OFT studies behaviors that maximize Darwinian fitness, which is an unmeasurable

quantity in general. Charnov [23] and Pyke et al. [92] suggest that the lifetime

rate of total gain to total time is a sufficient fitness surrogate because it predicts

behaviors that achieve maximal foraging gain for minimal foraging time, which are

the two objectives from the classic optimization model of natural selection [103].

Unfortunately, for any finite lifetime, this optimization objective strongly depends on

precise knowledge of how gain and time covary [23, 80]. So lifetimes are assumed to

15

be very long (i.e., practically infinite with respect to prey handling and search times)

so that the sensitivity of the optimization objective to the covariances is vanishingly

small.

In particular, Charnov [23] assumes that encounters with each type come from an

independent Poisson counting process. So the process describing all encounters is the

merged Poisson process, and the energetic intake is modeled by a Markov renewal–

reward process corresponding to this merged process. Over a long time, to maximize

both cycle gain and number of cycles, the optimal foraging behavior (~p, ~τ) ∈ F should

maximize the stochastic limit of total gain to total time [80]. That is, the behavior

should maximize the rate
(

n∑

i=1

λipi (gi(τi)− ci(τi))

)

− cs

1 +

n∑

i=1

λipiτi

, (1.3)

which matches Equation (1.2) with

a , −cs, ai(τi) , λi (gi(τi)− ci(τi)) , d , 1, and di(τi) , λiτi. (1.4)

The prey model lets τ−i , τ+i for each task type i ∈ {1, 2, . . . , n} and finds the optimal

~p ∈ [0, 1]n, and the patch model lets p−i , p+i , 1 for each patch type i ∈ {1, 2, . . . , n}

and finds the optimal ~τ ∈ [0,∞)n [112].

The expectation of ratios: Some observational evidence [e.g., 69] contradicts

predictions from the marginal value theorem (MVT), which is the principle result

of the patch model [23, 24, 111, 112]. In response, arguments from Templeton and

Lawlor [117] have been used as fodder for expectation-of-ratios [15, 16, 44] objective

16

functions of the form
n∑

i=1

λi

λ
pi
gi(τi)− ci(τi)− cs

λ
1
λ
+ τi

(1.5)

which matches Equation (1.2) with

a , 0, ai(τi) ,
λi

λ

gi(τi)− ci(τi)− cs

λ
1
λ
+ τi

, d , 1, and di(τi) , 0.

These two optimization objectives are significantly different, but because they are

advantage-to-disadvantage functions, they can both be analyzed with the generic

methods presented in this work.

1.1.3 New Objectives for Finite-event Scenario

The success of classical OFT to describe animal foraging behavior is not uniform

across species and environments. Likewise, some applications will be ill suited for

solutions inspired by OFT. Below, in Section 1.1.3, we focus on criticisms of the

OFT formulation for cases where task-processing agents cannot be assumed to have

unending operation. Then, in Section 1.1.3, we introduce a novel optimization model

of an autonomous task-processing agent that may better fit applications that are less

suitable for OFT.

OFT inadequacies in finite-lifetime models

Classical foraging theory is not well suited for modeling finite lifetimes where either

success thresholds must be met or only a finite number of tasks can be processed. For

example, a small bird may perish from the heat lost during the night if it does not eat

enough during the day. Likewise, an AAV dispatched for a finite periods of time (e.g.,

due to daily fuel constraints) may fail each mission if it ignores too many tasks with a

low marginal return (e.g., by avoiding low-profit-per-time tasks in favor of waiting for

17

high-profit-per-time tasks, it may return too little overall profit in its finite mission

time to justify its overall fuel cost). In the infinite lifetime case, future opportunities

are certain, and so waiting can be a beneficial tactic. However, in the finite-lifetime

case, future opportunities are uncertain, and so successful foragers should be biased

toward present returns.

For cases with survival thresholds over short times, Stephens and Charnov [111]

describe a risk-sensitive forager that maximizes the probability that a net gain thresh-

old will be achieved by some critical time. This risk-sensitive foraging model is also

used by Andrews et al. [9] for an AAV application where the vehicle is given a value

threshold it must reach by the end of its mission time. Initially, the AAV specializes

on targets that have a high value-to-time ratio. However, at the end of its life, if it

has not accumulated enough value to reach its goal threshold, it begins to general-

ize on all targets it encounters. Hence, the risk-sensitive behavior is a perturbation

of the rate-maximizing behavior that becomes most pronounced at the end of life

(i.e., at the end of an agent’s mission). However, the risk-sensitive model not only

uses limiting forms of the mean and variance of the accumulated gain, but it is also

based on results that follow from the central-limit theorem. Hence, even though the

formulation is meant to prescribe behaviors for short-lifetime agents, it is based on

assumptions that are only true for agents with long lifetimes.

As discussed by Wajnberg [122], OFT can be used to describe the behavior of an

insect that searches for hosts to lay her eggs in. However, it is best suited to model

this scenario when typical lifetimes are too short to deplete the egg supply. However,

several studies have shown that egg-limited parasitoids are not uncommon [33, 45,

64, 90, 100, 101]. Furthermore, in AAV applications where packages (e.g., bombs or

18

food bundles) are dropped on targets, the mission will likely be limited by the number

of packages able to be stored within the AAV. In Section 1.1.3, we develop a simple

task-processing model that fits within the advantage-to-disadvantage framework and

accounts for both success thresholds and limitations on number of tasks processed.

Autonomous agent model for finite-event scenario

Consider a task-processing agent similar to the one described in Section 1.1.1.

That is, consider an agent that encounters n types of tasks where a task of type i ∈

{1, 2, . . . , n} is characterized by its Poisson encounter rate λi, processing preference

pi, average processing time τi, average gain g(τi), and average cost c(τi). That agent

pays an average search cost cs/λ between encounters, where λ , λ1 + · · · + λn is

the encounter rate of the Poisson process resulting from merging the n independent

encounter processes for each task type. However, also let N ∈ {1, 2, . . . } be the

number of processed encounters in a mission duration. For example, a forager may

need to eat or store N items to survive over winter, or a female may have N eggs to

lay in encountered hosts, or an AAV must deliver one of N packages to each deserving

target. In each case, the time to complete each mission is finite and random, but the

number of tasks completed in each mission is fixed at N .

Instead of considering the Markov renewal process that renews at each encounter

at a rate of λ1+ · · ·+λn, it is convenient to focus on the Markov renewal process that

renews at every processed encounter at the lower rate of p1λ1+p2λ2+ · · ·+pnλn. The

agent mission can be represented by either process, but many cycles of the former

process may complete during a single cycle of the latter process. Hence, for this

finite-event agent, the expectation of total net gain G(N), cost C(N), and time T (N)

19

are given by

E(G(N)) = N

(
n∑

i=1

λipi (gi(τi)− ci(τi))

)

− cs

n∑

i=1

λipi

, (1.6)

E(C(N)) = N

(
n∑

i=1

λipici(τi)

)

+ cs

n∑

i=1

λipi

, (1.7)

and

E(T (N)) = N

1 +

n∑

i=1

λipiτi

n∑

i=1

λipi

. (1.8)

These statistics can then be combined to form optimization objectives suitable for

different applications. In particular, the finite-event agent can maximize:

(i) Excess rate. Because mission durations are finite by definition, success thresholds

can be added. Let GT ∈ R be a gain penalty charged to the agent after its N

processed encounters (e.g., an autonomous vehicle must accumulate GT dollars

of profit from the first N tasks it randomly encounters and picks for processing).

That is, GT is the value threshold the agent must reach to be dispatched on

another mission. This threshold will often be positive, but it may be negative

(e.g., it may be a handicap allowed to the agent). In this case, optimal behaviors

20

maximize the ratio of excess net gain to total time, which is the advantage-to-

disadvantage function

E(G(N))−GT

E(T (N))
=

(
n∑

i=1

λipi

(

gi(τi)− ci(τi)−
GT

N

))

− cs

1 +
n∑

i=1

λipiτi

. (1.9)

In this case, decreasing threshold GT to zero or increasing the number of cycles N

will make their effect on the optimal behavior negligible. In particular, as N →

∞, finite-event excess-rate maximization is equivalent to classical infinite-time

rate maximization. That is, when future opportunities are certain, choices should

be made based on the balance between returned gain and required processing

time (i.e., marginal rate). However, when future opportunities are uncertain (i.e.,

low N) or the threshold for success is high (i.e., high GT), the optimal behavior

shifts toward high-gain tasks that better guarantee meeting the success threshold.

That is, when the agent is at risk of not meeting its success threshold, it spends

relatively more time processing (i.e., earning gain for certain) and relatively less

time searching.

(ii) Time-discounted net gain. Classical OFT describes behaviors that simultane-

ously maximize net gain and minimize foraging time. The relative importance

of time minimization over gain maximization is varied in order to minimize the

opportunity cost [51] of each activity. That is, the optimal rate of gain repre-

sents the maximum gain that can be returned for each unit of time. An OFT

behavior accumulates gain in each activity only if there is no other activity that

could return more mean gain for that amount of time. Hence, the optimal rate of

gain represents the gain–time tradeoff that minimizes opportunity cost. Instead,

21

the gain–time tradeoff can be fixed a priori . In particular, an optimal behavior

might maximize the advantage-to-disadvantage function

E(G(N))−GT − wE(T (N)) =

N

(
n∑

i=1

λipi

(

gi(τi)− ci(τi)−
GT

N
− wτi

))

− cs − w

n∑

i=1

λipi

(1.10)

where discount rate w ∈ R is a constant representing the relative importance

of the time objective over the gain objective. In cases where p−1 = p−2 = · · · =

p−n = 0, we assume that cs + w ≥ 0 to avoid the pathological case where it is

best for the forager not to do any processing. We include the threshold GT for

completeness, but it only shifts the objective function by a constant value, and

so it has no impact on the optimal solution. That is, when maximizing excess

rate above, the relative value of gain and time float with the environment and

the success threshold. For high thresholds in environments where encounters

return relatively low gain, high-gain opportunities have a greater value. In this

case, because the relative gain–time value is fixed, the success threshold has no

effect on optimal solutions.

(iii) Excess efficiency. Stephens and Krebs [112] criticize using efficiency (i.e., benefit-

to-cost) objectives because they neglect the impact of time and do not differen-

tiate between behaviors that bring large gains at large costs and small gains at

small costs. However, efficiency is a commonly used metric in engineering appli-

cations. Additionally, in our finite-event model, the impact of time is explicitly

modeled by cost functions, and gain thresholds help to differentiate between

22

high-gain–high-cost and low-gain–low-cost behaviors. So we can define an effi-

ciency metric that answers both concerns of Stephens and Krebs. Let GT
g ∈ R be

a minimum total gross gain required for success. An optimally efficient behavior

will maximize the advantage-to-disadvantage function

E(G(N)) + E(C(N))−GT
g

E(C(N))
=

n∑

i=1

λipi

(

gi(τi)−
GT

g

N

)

cs +
n∑

i=1

λipici(τi)

. (1.11)

Again, decreasing threshold GT
g or increasing number of cycles N sufficiently

will make their impact on the optimal behavior negligible. If the task-processing

agent is given a low success threshold or a large number of tasks to complete, it

should not greatly perturb its behavior from the pure efficiency maximizer.

(iv) Cost-discounted gain. Just as the gain–time tradeoff can be fixed a priori , so

can the gain–cost tradeoff. In particular, an optimal behavior could maximize

the advantage-to-disadvantage function

E(G(N)) + E(C(N))−GT
g − wE(C(N)) =

N

(
n∑

i=1

λipi

(

gi(τi)−
GT

g

N
− wci(τi)

))

− wcs

n∑

i=1

λipi

(1.12)

where discount rate w ∈ R is a constant representing the relative importance of

the cost objective over the gain objective. Again, we assume that cs + w ≥ 0 in

cases where p−1 = · · · = p−n = 0 to avoid the pathological case, and we include

the GT
g threshold for completeness.

23

These four optimization objectives are all advantage-to-disadvantage functions, and

they will be graphically examined in the examples from Section 1.2. Results of the

application of the algorithms described in Section 1.3 will be given in Section 1.4.

1.2 A Graphical Optimization Approach

It can be instructive to study advantage-to-disadvantage functions graphically, es-

pecially when those functions lack properties required for analytical tractability. Here,

we extend the graphical optimization approach described by Stephens and Krebs [112]

to arbitrary advantage-to-disadvantage functions with arbitrary constraints. We use

insights from the graphical process to compare and contrast the example optimiza-

tion objectives discussed in Section 1.1. An analytical optimization approach is given

in Section 1.3 along with algorithms that are guaranteed to find an optimal task-

processing behavior for certain scenarios.

Because Equation (1.2) is a ratio, its value can be depicted as the slope of a

line, and so optimization is finding the line with the steepest slope. This process

is illustrated in Figure 1.1. Here, the shaded area is constructed by plotting the

point (
∑n

i=1 pidi(τi),
∑n

i=1 piai(τi)) for every (~p, ~τ) ∈ F . For each of those points,

the slope of the line connecting it to the point (−d,−a) is equal to the advantage-

to-disadvantage function for the corresponding behavior. So optimization consists of

rotating a ray originating from (−d,−a) from −90◦ toward 90◦ and stopping at the

angle just before the ray leaves the shaded region for the last time. If (−d,−a) is

within the shaded region, the ray will never leave the region between −90◦ and 90◦

of rotation, and so the 90◦ ray should be used. In general, the shaded region need

24

J(~p, ~τ) ,

a+
n∑

i=1

piai(τi)

d+
n∑

i=1

pidi(τi)

n∑

i=1

piai(τi)

n∑

i=1

pidi(τi)

−a

−d

J∗

J−

Figure 1.1: Graphical optimization of an advantage-to-disadvantage function. Each
point in the shaded region corresponds to a different feasible behavior (~p, ~τ), and the
slope of the line connecting that point to (−d,−a) is the value of the objective function
J(~p, ~τ) for that behavior. Hence, the three open circles correspond to three distinct
behaviors that result in the same suboptimal rate J−. An optimal behavior falls on
the (−d,−a)-ray with the greatest positive slope. Here, the filled circle corresponds
to the unique optimal behavior that results in the optimal rate J∗, which is the slope
of the corresponding (−d,−a)-ray.

not be convex nor connected, but it should be closed (e.g., it could be a finite set of

points).

1.2.1 Optimization of the Classical Objective

For the following, let

λ ,

n∑

i=1

λi, g ,

n∑

i=1

λi

λ
pigi(τi), c ,

n∑

i=1

λi

λ
pici(τi), and τ ,

n∑

i=1

λi

λ
piτi.

The average time between encounters is 1/λ, and λi/λ is the probability that an

encounter is with a task of type i ∈ {1, 2, . . . , n}. The expected processing gain,

processing cost, and processing time for a single encounter are g, c, and τ , respectively,

25

g − c

τ
− 1

λ

J∗

−cs
cs

λ

Figure 1.2: Graphical optimization of classical optimization objective. As search cost
cs or interarrival time 1/λ increases, the mean processing time τ will increase.

and the rate of gain in Equation (1.3) is equivalent to

(
n∑

i=1

λi

λ
pi (gi(τi)− ci(τi))

)

− cs

λ

1

λ
+

n∑

i=1

λi

λ
piτi

=
g − c− cs

λ
1

λ
+ τ

. (1.13)

For all i ∈ {1, 2, . . . , n}, assume that λi/λ is constant with respect to λ (i.e., an

encounter density); this assumption assists in the qualitative analysis of the impact

of parameter changes on the optimal (p, τ) behavior. Increases in the optimal τ

or g reflect increased preferences for higher processing times or processing gains,

respectively.

Graphical optimization of this function is shown in Figure 1.2 for a given search

cost cs and encounter rate λ. As the average interarrival time 1/λ or search cost cs

increases, the point (−1/λ, cs/λ) anchoring the ray with slope J∗ will move to the

left. Consequently, the point of tangency between the ray and the feasible behavior

frontier will move to the right. That point corresponds to the optimal combination

of average processing time τ and average net processing gain (g − c). If cs or 1/λ

increase to beyond the point where cs/λ matches the (g − c)-peak of the feasible

26

behavior frontier, the optimal average processing time τ will continue to increase

although the optimal average net processing gain (g − c) decreases.

In words, small increases in search cost cs/λ cause the optimal processing time

to increase in order to return more average processing gain from each encounter.

However, large increases in search cost cs/λ cause the optimal processing time per

encounter to increase in spite of the resulting decreasing average processing gain per

encounter. In this region of decreasing average processing gain, the increased average

processing time preempts the very costly searching (i.e., rather than adding gain from

processing, search cost is being removed by searching relatively less). This effect is a

result of opportunity cost minimization; there is less opportunity cost for additional

processing when searching is itself very costly. Processing tasks not only accumulates

gain, but it prevents the loss of gain through searching. A task-processing agent

ceases processing a task when it is likely that a task with higher marginal returns will

be found quickly. However, when there is a long time between encountered tasks, it

is better to burn fuel processing a task longer than burning fuel searching for a new

task because gain is accumulated while processing but not while searching.

1.2.2 Optimal Behaviors from Alternate Objectives

For simplicity in this graphical analysis, assume the special case of patch problems

(i.e., p−i = p+1 = p∗i , 1 for each i ∈ {1, 2, . . . , n}). These results can be extended

to prey-model problems by translating increased task-processing times to increased

preference for task types with higher processing times; these prey-model effects (e.g.,

preference reversal) are explored in Section 1.4 after the analytical methods in Sec-

tion 1.3 are introduced. Consider finite-event maximization of:

27

(i) Excess rate. In this case, Equation (1.9) is

n∑

i=1

λi (gi(τi)− ci(τi))−
n∑

i=1

λi
GT

N
− cs

1 +

n∑

i=1

λiτi

=

g − c−
(
GT

N
+

cs

λ

)

1

λ
+ τ

, (1.14)

which is equivalent to Equation (1.13) with the per-cycle search cost cs/λ aug-

mented by the per-cycle average success threshold GT/N . That is, in the patch

case, every finite-event task-processing agent that maximizes excess rate can be

transformed into an equivalent infinite-time rate maximizer by increasing search

cost. So increasing threshold GT or decreasing number of cycles N will have the

same effect on the finite-event excess-rate maximizer as increasing search cost

cs on the infinite-time rate maximizer, and Figure 1.2 also describes this case.

This result is consistent with the idea that thresholds induce an exploration cost

which is reduced when future opportunities are certain. That is, because the

agent receives no gain while searching, searching is a less desirable activity when

high gain thresholds must be met.

Stephens and Charnov [111] present a risk-sensitive model of foraging behavior

that predicts the optimal combination of gain mean and variance to maximize the

probability of reaching a critical energetic threshold. Stephens and Krebs [112]

show that optimal risk-sensitive processing times will be:

• greater than rate-maximized processing times when the energetic threshold

is less than expected gain. Hence, present gains are increased to reduce

lifetime gain variance (i.e., reduce uncertainty).

• less than rate-maximized processing times when the energetic threshold is

greater than expected gain. Hence, lifetime gain variance is increased (i.e.,

28

to increase probability of very high accumulated gain) by increasing number

of lifetime encounters at the cost of reduced lifetime mean gain.

• identical to rate-maximized processing times when the energetic threshold

is equal to expected gain.

So the time-limited task-processing agent trades per-encounter gain with number

of encounters to maximize the probability of reaching a success threshold.

The excess-rate task-processing model modifies the classical rate-maximizing

model in a similar way. However, this model has a fixed number of encoun-

ters and a variable time, and the gain success threshold is essentially a forced

cost. Consequently, results are opposite the expected results from risk-sensitivity

theory. In particular, when the success threshold is:

• positive, the agent increases processing times. In this context, a posi-

tive threshold implies that the agent suffers a loss from each processed

encounter, and so the opportunity cost of more processing time is reduced.

The agent delays the next encounter in order to mitigate the effect of the

next positive threshold.

• negative, the agent decreases processing times. In this context, a negative

threshold implies that the agent receives a gain from each processed en-

counter, and so the opportunity cost of more processing is increased. At

this heightened cost, the agent cannot afford to spend more time processing

when future negative thresholds are left to be encountered.

• zero, the agent behaves like like a classical rate maximizer.

29

(ii) Time-discounted net gain. Under the patch assumption, the time-discounted net-

gain (TDNG) objective function in Equation (1.10) does not have a conenient

slope-maximizing graphical interpretation; however, a different graphical method

can be used, and this method reveals a relationship between time-discounted net-

gain maximization and rate maximization. In particular, Equation (1.10) in the

patch case is equivalent to

N((g − c)− wτ)
︸ ︷︷ ︸

(∗)

−N

(
cs

λ
+ w

1

λ
+

GT

N

)

.

︸ ︷︷ ︸

(∗∗)

Because N > 0 and (∗∗) is constant, TDNG optimization is identical to op-

timization of (∗) , (g − c) − wτ . So possible solutions come from the dark

upper frontier in Figure 1.2, which corresponds with the behaviors that maxi-

mize (g − c) for a given τ and minimize τ for a given g − c (i.e., the behavior

will be Pareto optimal with respect to these two optimization objectives). The

particular solution from this frontier is depends on the selection of w ∈ R, which

is a cost rate that converts time into gain.

Graphical TDNG optimization is shown in Figure 1.3. Just as in Figure 1.2,

each point in the shaded area of Figure 1.3(a) is the pair (τ , g − c) correspond-

ing to a particular (~p, ~τ) behavior. In this example, the frontier of the shaded

area is smooth and continuous, and so it can be represented as a differentiable

function (g − c)(τ), and the optimal processing average processing time τ ∗ is

the point where (g − c)′(τ ∗) = w and (g − c)′′ < 0. So optimization of smooth

frontiers is depicted as finding a point of deceleration that is tangent to a line

with slope w. Two such lines are shown in Figure 1.3(a); the thick portions of

30

g − c

τ

w1

w2

τ1∗ τ2∗

(a) Aggregate showing rate rela-
tionship.

gi(τi)− ci(τi)

τi

w1

w2

τ1∗i τ2∗i

(b) Optimization for type
i ∈ {1, 2, . . . , n}.

Figure 1.3: Time-discounted net-gain optimization. The shaded area used in graph-
ical rate maximization is also used in (a); however, the optimal TDNG behavior
corresponds to the point of tangency with a line of slope w. Here, the steeper cost
rate w1 > w2 is associated with a shorter average time τ 1∗ < τ 2∗ because time is
more expensive. As shown in (b), for a given w, the optimal TDNG τi is the point of
tangency between of tangency between gi(τi)− ci(τi) and a line of slope w.

those lines correspond to (cs, λ) combinations where TDNG and rate maximiza-

tion are equivalent. As discussed by Houston and McNamara [51], if w is set

to the maximal value of Equation (1.14) (i.e., the maximum long-term rate of

gain), the corresponding gain–time tradeoff will also maximize long-term rate of

gain.

In Section 1.3, we give precise analytical methods for optimization of this func-

tion. Meanwhile, we observe that because (g − c)− wτ is a weighted sum, then

for each type i ∈ {1, 2, . . . , n}, the optimal processing time τ ∗i is the point that

maximizes gi(τi)− ci(τi)− wτi. So TDNG optimization is equivalent to the de-

coupled optimization of the n versions of this expression. In particular, for each

i ∈ {1, 2, . . . , n}, if optimal processing time τ ∗i ∈ (τ−i , τ+i), then it must be that

g′i(τi) − c′i(τi) = w and g′′i (τi)− c′′i (τi) < 0. So optimization of each type has an

identical structure as optimization of the aggregate. As shown in Figure 1.3(b),

31

each optimal processing time is the point of tangency with a line of slope w. As

shown by the dark line segments in Figure 1.3(a), once the optimal processing

time is found for every type, the line with slope w that intersects (τ ∗, (g − c)∗)

can be used to find the set of (cs, λ) combinations that lead to the same optimal

behavior in the rate-maximizing case.

(iii) Excess efficiency. The graphical optimization approach shows that efficiency

maximization and rate maximization can have similar optimal solutions. In

these patch problems, Equation (1.11) is

n∑

i=1

λigi(τi)−
n∑

i=1

λi

GT
g

N

cs +

n∑

i=1

λici(τi)

=
g −

GT
g

N
cs

λ
+ c

, (1.15)

which resembles Equation (1.14) and has optimization depicted by Figure 1.4(a).

In particular, if the processing cost functions are monotonically increasing with

time, changes in the environment associated with increases in optimal-rate pro-

cessing time will also be associated with increases in optimal-efficiency processing

time. The efficiency defined by Equation (1.15) is equivalent to a long-term rate

of gain after time has been converted to a different currency. In this case, those

currency conversions vary among types and the environment.

(iv) Cost-Discounted Gain. Under the patch assumption, the cost-discounted gain

(CDG) function in Equation (1.12) is

N (g − wc)−N

(

cs

λ
+

GT
g

λ

)

,

which is maximized at the same point as g − wc. As in TDNG optimization,

optimization of each type can be decoupled from the other types. In particular,

32

g

c
− cs

λ

J∗

GT
g

N

(a) Excess-efficiency maximization.

gi(τi)

τi

wc′i

τ∗i
(b) CDG optimization for
type i ∈ {1, . . . , n} with lin-
ear processing cost.

Figure 1.4: Optimization based on efficiency. In (a), excess-efficiency maximization
is shown to be similar to excess-rate maximization. Here, as search cost cs or in-
terarrival time 1/λ increases, the mean processing cost c will increase. So long as
processing cost increases are due to processing time increases, mean processing time
τ will also increase. This result qualitatively matches what is expected for rate max-
imization. In (b), cost-discounted gain optimization is shown for one particular type.
In this example, the type’s processing cost ci(τi) is depicted as a linear function c′iτi,
which makes CDG optimization identical to TDNG optimization when each type’s
processing time is scaled by c′i.

for each i ∈ {1, 2, . . . , n}, each optimal processing time τ ∗i maximizes gi(τi) −

wci(τi). In the special case where processing costs are linear in time, optimization

is depicted by Figure 1.4(b). That is, optimization is nearly identical to the

TDNG case except that the processing time in type i ∈ {1, 2, . . . , n} is scaled by

c′i.

So not only can each of the finite-event optimization objectives be optimized using

similar methods, but they all have results that are qualitatively identical to classical

rate-maximization results. Hence, these optimization objectives can be used to model

behaviors that do not perfectly fit the classical foraging model.

33

The expectation-of-ratios objective in Equation (1.5) apparently does not have

a convenient structure for graphical optimization. In Section 1.3, we give ana-

lytical strategies for its optimization. Meanwhile, to motivate a graphical opti-

mization method, we observe that because Equation (1.5) is a weighted sum, then

it can be shown that optimization of Equation (1.5) reduces to optimization of

(gi(τi) − ci(τi) − cs/λ)/(1/λ + τi) for each i ∈ {1, 2, . . . , n}. Each of these func-

tions is an advantage-to-disadvantage function nearly identical to Equation (1.14)

when n = 1, and so the standard graphical optimization procedure can be applied

to each type separately. However, although expectation-of-ratio optimization can be

completed separately for each type i ∈ {1, 2, . . . , n}, the optimal processing times are

still related by global parameters cs and λ.

1.3 An Analytical Optimization Approach

The graphical approach described in Section 1.2 makes qualitative predictions

about average behaviors but is inappropriate for more precise investigations. Here,

we apply a more rigorous analysis approach. In particular, we describe the math-

ematical structure of smooth objective functions at points of optimality. In Sec-

tion 1.3.3, we provide detailed descriptions of algorithms that are guaranteed to find

these points of optimality. However, to highlight the salient features common to all of

those algorithms, we first connect the characterization of a generalized task-processing

optimum to the popular algorithms used in OFT-type applications (Section 1.3.2).

Finally, we summarize the application of algorithms from Section 1.3.3 to the exam-

ple advantage-to-disadvantage functions described in Section 1.1, and we list some

observations about important similarities and differences in the results.

34

1.3.1 Characterization of Optimal Behaviors

Here, we must characterize the optimality of Equation (1.2) over the set of behav-

iors in Equation (1.1). We give conditions that guarantee that a behavior is a strict

local maximum of Equation (1.2). If the optimization objective is strictly convex,

these conditions describe its unique global maximum. Our analysis uses Lagrange

multiplier theory [18], and so we assume that ai and di are twice continuously dif-

ferentiable for each type i ∈ {1, 2, . . . , n} in an open neighborhood of the optimal

behavior.

Take some feasible behavior (~p∗, ~τ ∗) ∈ F , and let A∗ , A(~p∗, ~τ ∗) and D∗ ,

D(~p∗, ~τ ∗). For each type j ∈ {1, 2, . . . , n}, assume that

p∗j =

{

p−j if D∗aj(τ
∗
j) < A∗dj(τ

∗
j),

p+j if D∗aj(τ
∗
j) > A∗dj(τ

∗
j).

(1.16)

Because pj = p−j or pj = p+j for each type j ∈ {1, 2, . . . , n}, we call Equation (1.16)

the extreme-preference rule. Additionally, for each type j ∈ {1, 2, . . . , n}, assume

that

τ−j < τ ∗j < τ+j and







D∗a′j(τ
∗
j) = A∗d′j(τ

∗
j)

and

D∗a′′j (τ
∗
j) < A∗d′′j (τ

∗
j),

(1.17a)

or

τ ∗j = τ−j and D∗a′j(τ
∗
j) < A∗d′j(τ

∗
j), (1.17b)

or

τ ∗j = τ+j and D∗a′j(τ
∗
j) > A∗d′j(τ

∗
j). (1.17c)

35

The condition in Equation (1.17a) ensures that the interior coordinate is at a sta-

tionary point of the objective function with local convexity. The conditions in Equa-

tions (1.16), (1.17b), and (1.17c) ensure that the extreme coordinates sit on downward

slopes at the edge of the objective function. So Equations (1.16) and (1.17) define

sufficiency conditions for optimality. Under these conditions, (~p∗, ~τ ∗) must be a strict

local maximum. If Equation (1.2) is convex everywhere, then the behavior is its

unique global maximum.

1.3.2 Motivating Interpretations

Detailed algorithms for finding points that meet the described optimality condi-

tions are given in Section 1.3.3. Here, we show how the conditions in Equations (1.16)

and (1.17) are natural generalizations of familiar classical foraging theory and present

summaries of the existing OFT algorithms to motivate the general cases in Sec-

tion 1.3.3. Elements of these two cases can be found in each of the generalized

algorithms. In particular, task types are ranked by some generalized profitability and

then partitioned into take-most and take-few sets, and processing times are found

through some generalized marginal value theorem.

Prey model as optimal task-type choice: profitability ordering

When applied to Equation (1.3) for the prey model case (i.e., when it is given

that τ+i = τ−i = τ ∗i for each type i), the extreme-preference rule in Equation (1.16) is

equivalent to

p∗j =







0 if
gj(τ

∗
j)−cj(τ

∗
j)

τ∗j
<

(

n
∑

i=1

λip∗i (gi(τ∗i)−ci(τ∗i))
)

−cs

1+
n
∑

i=1

λip∗i τ
∗
i

,

1 if
gj(τ

∗
j)−cj(τ

∗
j)

τ∗j
>

(

n
∑

i=1

λip∗i (gi(τ∗i)−ci(τ∗i))
)

−cs

1+
n
∑

i=1

λip∗i τ
∗
i

,

(1.18)

36

which is the familiar zero–one rule [112] where aj(τ
∗
j)/dj(τ

∗
j) is the profitability gj(τ

∗
j)/τ

∗
j

of type j ∈ {1, 2, . . . , n}. This rule states that if task types are indexed by profitability

so that

g1(τ
∗
1)− c1(τ

∗
1)

τ ∗1
>

g2(τ
∗
2)− c2(τ

∗
2)

τ ∗2
> · · · > gn(τ

∗
n)− cn(τ

∗
n)

τ ∗n
,

then there is a critical k∗ ∈ {0, 1, . . . , n} such that

p∗j =

{

1 if j ≤ k∗

0 if j > k∗.

That is, k∗ partitions the set of types {1, 2, . . . , n} into a take-all set {1, 2, . . . , k∗}

and a take-none set {k∗ + 1, . . . , n}. Moreover, it is the optimal rate J∗ , J(~p∗, ~τ ∗)

that partitions the profitabilities in the same manner. That is,

g∗1
τ ∗1

> · · · > gk∗

τ ∗k∗
> J∗ >

gk∗+1

τ ∗k∗+1

> · · · > g∗n
τ ∗n

where optimal net gain g∗j , gj(τ
∗
j)− cj(τ

∗
j) for each j ∈ {1, 2, . . . , n}. This relation-

ship is depicted in Figure 1.5 for a case with n = 5. Key results from this analysis

are that:

• There is an ordering of task-type preference that is invariant of the environment.

If it is optimal to exclude tasks of type k, tasks of type ℓ > k must also be

excluded. Similarly, if it is optimal to include tasks of type k, tasks of type

j < k must also be included. This ordering does not depend on the encounter

rates nor the cost of search.

• As the maximum long-term rate of gain J∗ decreases (e.g., due to a global decline

in encounter rates or an increase in search cost), the optimal task-processing

strategy should be more inclusive (i.e., more types should be included in the

37

Processing time

P
ro
ce
ss
in
g
ga
in

For type i: or @
(

processing time τ∗i , gain g∗i
)

(τ∗1 , g
∗

1)

(τ∗2 , g
∗

2)

(τ∗3 , g
∗

3)

(τ∗4 , g
∗

4)

(τ∗5 , g
∗

5)

Pr
oc
es
s

Ig
no
re

J∗

Figure 1.5: Graphical summary of prey model result. For a task type i ∈ {1, 2, 3, 4, 5},
the average processing time τ ∗i and average net gain g∗i is plotted as a dot. The
maximum long-term rate of gain J∗ is the slope of the dashed line which separates
the processed types, 1, 2, and 3, from the ignored types, 4 and 5. The profitability
of each type is the slope of the dotted line connecting the origin to its (gain, time)-
coordinate.

take-all set). Likewise, as the maximum long-term rate of gain J∗ increases, the

optimal strategy should be more exclusive.

Moreover, the zero–one rule means that finding the optimal take-all set of task types

involves a combinatorial search through a set of 2n different ~p preference profiles.

However, because of the invariant task-type ordering, there are at most n+1 possible ~p

vectors that must to be checked (i.e., the preference vectors [0, 0, . . . , 0]⊤, [1, 0, . . . , 0]⊤,

[1, 1, . . . , 0]⊤, . . . , and [1, 1, . . . , 1]⊤).

Patch model as optimal processing-time choice: marginal value

When Equation (1.17) is applied to Equation (1.3) for the patch model case (i.e.,

when it is given that p−i = p+i = p∗i = 1 for each type i), Equation (1.17a) is equivalent

38

to
τ ∗j > 0 and g′′j (τ

∗
j)− c′′j (τ

∗
j) < 0

and

g′j(τ
∗
j)− c′j(τ

∗
j) =

(
n∑

i=1

λip
∗
i (gi(τ

∗
i)− ci(τ

∗
i))

)

− cs

1 +
n∑

i=1

λip∗i τ
∗
i

,

(1.19)

which is the familiar marginal value theorem [23, 24]. Consider the special single-type

patch case where n = 1 and p−1 = p+1 = 1. Then Equation (1.19) is equivalent to

g′1(τ
∗
1)− c′1(τ

∗
1) =

(g1(τ
∗
i)− c1(τ

∗
1))− cs

λ1

1
λ1

+ τ ∗i
. (1.20)

Additionally, the graphical analysis in Figure 1.2 of this case degenerates so that all

behaviors fall on the bold Pareto frontier, and that frontier traces the shape of the

net gain function τ1 7→ g1(τ1) − c1(τ1). The resulting graph is exactly the situation

described by Equation (1.20). That is, the optimal task-1 processing time τ ∗1 occurs

at the point of tangency between the function g1 − c1 and a ray originating from the

point (−1/λ1, c
s/λ1).

1.3.3 Algorithms for Finding an Optimal Generalized Forag-

ing Behavior

Now that we have characterized optimal behaviors, we present three algorithms

that find an optimal behavior (~p∗, ~τ ∗) ∈ F for a task-processing agent when certain

assumptions are met. Because each algorithm has different requirements than the

others, one algorithm may apply to one task-processing scenario better than another.

However, all three share the following characteristics:

• For each type i ∈ {1, 2, . . . , n}, the functions ai and di are assumed to be twice

continuously differentiable.

39

• The types are ordered by maximum generalized profitability so that

max
τ1∈[τ

−
1
,τ+

1
]

{
a1(τ1)

d1(τ1)

}

> max
τ2∈[τ

−
2
,τ+

2
]

{
a2(τ2)

d2(τ2)

}

> · · · > max
τn∈[τ

−
n ,τ+n]

{
an(τn)

dn(τn)

}

.

Determination of this ordering is not simple to do in general, but the as-

sumptions for each case below greatly simplify the task. In two of the three

cases, the maximum generalized profitability ai/di occurs at τi = τ−i for all

i ∈ {1, 2, . . . , n}. In the other case, maximizing ai/di is equivalent to either

maximizing or minimizing ai for all i ∈ {1, 2, . . . , n}.

• To satisfy the extreme-preference rule from Equation (1.16), the n types are

partitioned into a high-preference set and a low-preference set. An optimal pool

size k∗ ∈ {0, 1, . . . , n} exists so that the k∗ types with the highest profitabilities

form the high-preference set and the n−k∗ other types form the low-preference

set. In particular, for each type i ∈ {1, 2, . . . , n} and each k ∈ {0, 1, . . . , n}, the

conditional preference pki is so that

pki ,

{

p+i if i ≤ k,

p−i if i > k,
(1.21)

and the optimal behavior (~p∗, ~τ ∗) will have p∗j = pk
∗

j for all j ∈ {1, 2, . . . , n}.

So after ordering the types appropriately, each algorithm finds an optimal pool size

and a set of optimal processing times for that pool size.

Generalized Prey Algorithm

Stephens and Krebs [112] describe a prey model algorithm that finds a (~p∗, ~τ ∗) to

optimize Equation (1.3) when ~τ ∗ is known a priori (i.e., it is constrained to a single

point by the environment). Because τ ∗i is fixed, the functions ai and di are replaced

40

with constants ai(τ
∗
i) and di(τ

∗
i), respectively. Here, we present a generalized version

of the algorithm that does not fix ~τ ∗. Instead, we only require that the function di is

constant and nonzero for each type i ∈ {1, 2, . . . , n}.

Assume that for distinct types j, k ∈ {1, 2, . . . , n},

(i) The function dj is constant and nonzero.

(ii) Functions dj and dk have the same sign, and constant d is either zero or also

has this sign.

(iii) If d = 0, then a < 0.

(iv) If dj is positive, then aj has a maximum, and if dj is negative, then aj has a

minimum (i.e., profitability function aj/dj has a maximum).

These assumptions guarantee that the objective function has a maximum.

Using item (iv), for each type j ∈ {1, 2, . . . , n}, let τ ∗j be the point that maximizes

the generalized profitability function aj/dj. Also assume that:

(v) The indices are ordered by generalized profitability so that

a1(τ
∗
1)

d1(τ
∗
1)

>
a2(τ

∗
2)

d2(τ
∗
2)

> · · · > an(τ
∗
n)

dn(τ ∗n)
.

Finally, to ensure strict local convexity of the solution, assume that:

(vi) For any k ∈ {0, 1, . . . , n− 1},

a+
n∑

i=1

pki ai(τ
∗
i)

d+
n∑

i=1

pki di(τ
∗
i)

6= ak+1(τ
∗
k+1)

dk+1(τ ∗k+1)

41

where pki is defined by Equation (1.21). By these assumptions, there is an optimal

pool size k∗ ∈ {0, 1, . . . , n} such that

k∗ , min


















k ∈ {0, 1, . . . , n− 1} :

a+
n∑

i=1

pki ai(τ
∗
i)

d+
n∑

i=1

pki di(τ
∗
i)

>
ak+1(τ

∗
k+1)

dk+1(τ ∗k+1)

︸ ︷︷ ︸

(∗)







∪ {n}












.

(1.22)

So k∗ can be found iteratively by choosing the smallest k ∈ {0, 1, . . . , n − 1} that

satisfies the underbraced expression (∗). Then, the behavior (~p∗, ~τ ∗) with

p∗j , pk
∗

j =

{

p+j if j ≤ k∗,

p−j if j > k∗

for each type j ∈ {1, 2, . . . , n} will be optimal. That is, the optimal behavior gives

highest preference to the k∗ types with highest profitability and ignores the other

n − k∗ types. So given the n generalized profitabilities, an optimal behavior can be

found by iterating through no more than n + 1 candidate behaviors.

Alternate Generalized Prey Algorithm

The algorithm in Section 1.3.3 cannot be used with the expectation-of-ratios func-

tion in Equation (1.5) because it has di ≡ 0 for each type i ∈ {1, 2, . . . , n}. Here,

we provide a similar algorithm to handle this case and others so long as d 6= 0. The

algorithm assigns an infinite generalized profitability to each type i ∈ {1, 2, . . . , n}

with di ≡ 0 and treats all other types in the same manner as in Section 1.3.3. That

is, types are ranked by their extended generalized profitabilities.

Assume that for distinct types j, k ∈ {1, 2, . . . , n},

(i) The function dj is constant and possibly zero.

42

(ii) The constant d 6= 0.

(iii) If dj 6= 0, then it has the same sign as d.

(iv) If d is positive, then aj has a maximum, and if d is negative, then aj has a

minimum (i.e., function aj/d has a maximum).

These assumptions are nearly identical to the ones in Section 1.3.3. Here, cases

with d = 0 are excluded in order to include cases with di ≡ 0 for at least one type

i ∈ {1, 2, . . . , n}.

Take (~p∗, ~τ ∗) ∈ F . Using item (iv), let τ ∗j be the point that maximizes aj/d for

each type j ∈ {1, 2, . . . , n}. Also assume that:

(v) The indices are ordered by extended generalized profitability so that there exists

some ℓ, u ∈ {0, 1, . . . , n+ 1} with ℓ < u and

dj(τ
∗
j) = 0 and

aj(τ
∗
j)

d
> 0 for each type j ∈ {1, . . . , ℓ}

and

aℓ+1(τ
∗
ℓ+1)

dℓ+1(τ
∗
ℓ+1)

>
a2(τ

∗
ℓ+2)

d2(τ
∗
ℓ+2)

> · · · > au−2(τ
∗
u−2)

du−2(τ
∗
u−2)

>
au−1(τ

∗
u−1)

du−1(τ
∗
u−1)

and

dj(τ
∗
j) = 0 and 0 >

aj(τ
∗
j)

d
for each type j ∈ {u, . . . , n}.

For strict local convexity of the solution, assume that:

(vi) For each type k ∈ {ℓ, ℓ+ 1, . . . , u− 2},

a+
n∑

i=1

pki ai(τ
∗
i)

d+
n∑

i=1

pki di(τ
∗
i)

6= ak+1(τ
∗
k+1)

dk+1(τ
∗
k+1)

43

where pki is defined by Equation (1.21). By these assumptions, the optimal pool size

k∗ ∈ {ℓ, ℓ+ 1, . . . , u− 2} is so that

k∗ ,

min


















k ∈ {ℓ, ℓ+ 1, . . . , u− 2} :

a+
n∑

i=1

pki ai(τ
∗
i)

d+
n∑

i=1

pki di(τ
∗
i)

>
ak+1(τ

∗
k+1)

dk+1(τ ∗k+1)

︸ ︷︷ ︸

(∗)







∪ {u− 1}












.

So k∗ can be found iteratively by choosing the smallest k ∈ {ℓ, ℓ+ 1, . . . , u− 2} that

satisfies the underbraced expression (∗). Then, the behavior (~p∗, ~τ ∗) with

p∗j , pk
∗

j =

{

p+j if j ≤ k∗,

p−j if j > k∗

for each type j ∈ {1, 2, . . . , n} will be optimal. So the optimal behavior can also be

found with a search through no more than n+ 1 candidates.

Generalized Patch Algorithm

The algorithms in Sections 1.3.3 and 1.3.3 cannot be used with Equation (1.3) in

the patch case because the function di(τi) , τi for each type i ∈ {1, 2, . . . , n} (i.e.,

it is not constant). Here, we give a generalized patch algorithm that can be used

when each generalized profitability function comes from a certain class of decreasing

functions.

Assume that for distinct types j, k ∈ {1, 2, . . . , n},

(i) The profitability function is strictly decreasing so that (aj(τj)/dj(τj))
′ < 0 for

any τj ∈ (τ−j , τ
+
j).

(ii) The convexities of aj and dj are such that (a′j(τj)/d
′
j(τj))

′ < 0 for any τj ∈

(τ−j , τ
+
j).

44

(iii) For any τj ∈ (τ−j , τ
+
j), dj(τj) 6= 0 and

• If dj(τj) > 0, then d′j(τj) > 0 (i.e., positive functions are rising).

• If dj(τj) < 0, then d′j(τj) < 0 (i.e., negative functions are falling).

So the magnitude of dj is nonzero and increasing everywhere on its interior.

(iv) For any τj ∈ (τ−j , τ+j) and any τk ∈ (τ−k , τ
+
k), dj(τj) and dk(τk) have the same

sign, and constant d is either zero or also has this sign.

These assumptions allow for the case where di(τ
−
i) = 0 for some type i ∈ {1, 2, . . . , n}.

So to guarantee that the objective function is well defined, also assume that:

(v) If d1(τ
−
1) = d2(τ

−
2) = · · · = dn(τ

−
n) = 0, then d 6= 0.

By the assumptions, for each type i ∈ {1, 2, . . . , n}, the profitability function ai(τi)/di(τi)

will be well defined for all τi ∈ (τ−i , τ+i), but it may have a singularity at τi = τ−i , and

so we extend the initial profitability so that

ai(τ
−
i)

di(τ
−
i)

, lim
τi→τ−i

ai(τi)

di(τi)
.

When there is no singularity or when the singularity is removable, this limit will be

finite. That is, the types can be partitioned into a set with unbounded profitabilities

and a set with bounded profitabilities whose bounds can be ordered. So assume that:

(vi) The indices are ordered so that there exists some ℓ ∈ {0, 1, . . . , n− 1} where

aj(τ
−
j)

dj(τ
−
j)

= ∞ for each type j ∈ {1, . . . , ℓ}

and

∞ >
aℓ+1(τ

−
ℓ+1)

dℓ+1(τ
−
ℓ+1)

>
a2(τ

−
ℓ+2)

d2(τ
−
ℓ+2)

> · · · > an−1(τ
−
n−1)

dn−1(τ
−
n−1)

>
an(τ

−
n)

dn(τ−n)
.

45

Next, for each type j ∈ {1, 2, . . . , n} and any k ∈ {0, 1, . . . , n}, define τkj so that

a′j(τ
k
j)

d′j(τ
k
j)

=

a+
n∑

i=1

pki ai(τ
k
i)

d+
n∑

i=1

pki di(τ
k
i)

or let

τkj ,







τ−j if
a′j(τ

k
j)

d′j(τ
k
j)

<

a+
n∑

i=1

pki ai(τ
k
i)

d+
n∑

i=1

pki di(τ
k
i)

,

τ+j if
a′j(τ

k
j)

d′j(τ
k
j)

>

a+
n∑

i=1

pki ai(τ
k
i)

d+
n∑

i=1

pki di(τ
k
i)

where pki is defined by Equation (1.21). These definitions represent a generalized

marginal value theorem. That is, τki represents the optimal patch residence time

in patches of type i given that the optimal pool size is k; it is well defined by the

assumption in item (ii). Again, to guarantee strict convexity of the objective function

at the optimal behavior, assume that:

(vii) For any k ∈ {ℓ, ℓ+ 1, . . . , n− 1},

a+
n∑

i=1

pki ai(τ
k
i)

d+
n∑

i=1

pki di(τ
k
i)

6= ak+1(τ
−
k+1)

dk+1(τ
−
k+1)

.

Finally, define optimal pool size k∗ ∈ {ℓ, ℓ+ 1, . . . , n} so that

k∗ , min


















k ∈ {ℓ, ℓ+ 1, . . . , n− 1} :

a+
n∑

i=1

pki ai(τ
k
i)

d+
n∑

i=1

pki di(τ
k
i)

>
ak+1(τ

−
k+1)

dk+1(τ
−
k+1)

︸ ︷︷ ︸

(∗)







∪ {n}












.

So k∗ can be found iteratively choosing the smallest k ∈ {ℓ, ℓ + 1, . . . , n − 1} that

satisfies the underbraced expression (∗). At each iteration, the processing times are

46

chosen using the generalized marginal value theorem. Then, the behavior (~p∗, ~τ ∗)

with

τ ∗j ,

{

τ−j if j ≤ ℓ,

τk
∗

j if j > ℓ,
and p∗j , pk

∗

j =

{

p+j if j ≤ k∗,

p−j if j > k∗

for each type j ∈ {1, 2, . . . , n} will be optimal. So finding the behavior is equivalent to

solving no more than n+1 generalized marginal value theorem (i.e., patch) problems

where the highest profitabilities are chosen as high preference types in each iteration.

1.4 Examples: Theory and Application

Here, we examine the consequences of objective function choice on the design of

decision-making behaviors for task processing. In particular, we apply methods from

Section 1.3 to the example functions from Section 1.1. In Section 1.4.1, the salient

theoretical differences between the resulting optimal behaviors are compared. In Sec-

tion 1.4.2, the results from a mobile agent simulation are presented to compare the

performance of a conventional foraging-inspired task-selection behavior with a similar

behavior developed using the refined methods described in this chapter.

1.4.1 Comparison of Theoretical Results

Applying the behavioral-design algorithms from Section 1.1 yields the generalized

profitabilities and MVT conditions summarized in Table 1.1. In each case, task

types are assigned indices ordered by decreasing maximum generalized profitability,

and any interior optimal processing time will satisfy the generalized MVT condition.

Comparing each row reveals features distinctive to each associated objective function,

and noting similarities reveals important structural features of classes of objective

functions.

47

Objective Generalized Profitability Generalized MVT Condition

Classical gi(τi)−ci(τi)
τi

g′i(τi)− c′i(τi) = J(~p, ~τ)

ER gi(τi)−ci(τi)−GT /N
τi

g′i(τi)− c′i(τi) = JER(~p, ~τ)

TDNG gi(τi)− ci(τi)− wτi g′i(τi)− c′i(τi) = w

EE
gi(τi)−GT

g /N

ci(τi)

g′i(τi)

c′i(τi)
= JEE(~p, ~τ)

CDG gi(τi)− wci(τi) g′i(τi) = wc′i(τi)

EoR
gi(τi)−ci(τi)−

cs

λ
1

λ
+τi

g′i(τi)− c′i(τi) =
gi(τi)−ci(τi)−

cs

λ
1

λ
+τi

Table 1.1: Sample optimization results for type i ∈ {1, 2, . . . , n}. The six rows
correspond to the five objective functions discussed: long-term rate of gain (Classical),
excess rate (ER), time-discounted net gain (TDNG), excess efficiency (EE), cost-
discounted gain (CDG), and expectation of ratios (EoR). Likewise, JER and JEE

refer to the ER and EE objective functions, and J refers to the classical optimization
objective. In all cases, an optimal behavior will have types ranked by maximum
generalized profitability and will meet the generalized MVT condition.

The classical MVT condition in the first row states that the optimal processing

time occurs when the instantaneous rate of gain in each patch drops to the long-

term rate of gain. This feature is mirrored in generalized MVT conditions for the

excess rate (ER) case in the second row as well as the excess efficiency (EE) case

in the fourth row. For all three cases, the optimal behavior for one task type is

coupled to the optimal behavior for another task type due to the mutual effects on

the environmental average. This feature is due to the presence of decision variables in

the denominator of the corresponding advantage-to-disadvantage objective functions.

Because the corresponding advantage-to-disadvantage functions do not have deci-

sion variables in their denominators, the generalized MVT condition for the time-

discounted-net-gain (TDNG) case, the cost-discounted-gain (CDG) case, and the

48

expectation-of-ratios (EoR) case state that the optimal processing times can be deter-

mined independently of each other (i.e., processing time determination is separable).

However, the optimal times are modulated by a common environmental parameter.

In the TDNG and CDG cases, it is the discount factor w that represents the relative

importance of gain maximization and time or cost minimization. Hence, in these two

cases, the encounter rates and search cost have no impact on the optimal behavior.

Thus, by fixing the discount factor, the opportunity cost of searching is also fixed and

thus does not vary with the environment. However, in the EoR case, even though

optimal processing times can be determined independently, they all simultaneously

respond to changes in search cost or encounter rates in a qualitatively similar way as

the optimal processing times in the classical case. In fact, for the single-type patch

case, the EoR and classical cases match.

In Section 1.2, it was shown how in the patch case, ER optimization is identical

to classical optimization if the cs/λ search cost is augmented by the GT/N per-task

threshold. However, as shown in the second row of the table, in prey or general

cases, the profitability ordering for the ER and classical cases will not match. In the

patch case, higher success thresholds imply longer optimal processing times because

of a greater premium on accumulating gain to reach the threshold. Similarly, for the

general ER case, higher success thresholds lead to a shift in profitability orderings

toward task types with higher gain. For example, classical long-term rate maximiza-

tion does not differentiate between two task types with (g1(τ1), τ1) = ($5, 5 s) and

(g2(τ2), τ2) = ($25, 25 s). However, when given a threshold of GT = $10 over N = 1

tasks, ER maximization properly prefers the latter task type that is guaranteed to

49

reach the GT = $10 threshold. Maximization of the EE objective has a similar fea-

ture; as the gross threshold per task GT
g /N ratio increases, task types with greater

gross gain are preferred more.

The invariance of profitability ordering is a key result of classical OFT. Although

the risk-sensitive foraging model of Stephens and Charnov [111] that is applied to

an autonomous vehicle problem by Andrews et al. [9] does predict that time-limited

foragers facing success thresholds will tend to generalize and include task types that

would otherwise be excluded by a rate maximizer, it does not predict that foragers

should ever change specializations. However, the ER maximization analysis above

suggests that task types that a task-processing agent would specialize on at low

thresholds may be excluded entirely from very high threshold cases. A similar pref-

erence reversal is also predicted by a stochastic dynamic programming analysis of

foragers facing mortality (i.e., finite lifetimes) by Iwasa et al. [53]. As discussed in

Section 1.1.3, the risk-sensitive models of Stephens and Charnov still make subtle

assumptions about long task-processing missions with many tasks processed. Hence,

the invariance of task-type ordering may be a result of the many-task long-run-time

assumptions present in popular foraging models. In engineering applications where

there are relatively few tasks or high success thresholds, bio-inspired task-type order-

ing should be evaluated carefully.

1.4.2 Simulation Results

Table 1.2 shows simulation results from for five different finite-event task-choice

(i.e., prey model) strategies with each of four different net gain success thresholds.

These simulations are similar to those by Andrews et al. [9] of a fixed-wing AAV

50

searching continuously over an area for tasks to process (e.g., targets for package

deposit, objects to collect); however, they apply equally as well to other mobile vehicle

scenarios. The statistics in the tables were generated from 300 Monte Carlo samples

for each of the 5×4 cases. The three rows that correspond to each gain threshold GT

show the mean and standard error of the mean (SEM) for total net gain and total

time accumulated in each run as well as the percentage of runs where the total gain

met or exceeded the success threshold. Each run terminated immediately after the

simulated agent completed exactly N = 300 tasks. The particular numerical details

of the simulation (e.g., encounter rates, gains, times) are given in the caption of the

table. Because the simulation represents a task-choice problem (i.e., lumped tasks

where each task type has fixed mean processing time and net gain), the average net

gain (gi(τi)− ci(τi)) for each task type i has been abbreviated gi.

Along with the five strategies used to generate Table 1.2, some additional triv-

ial strategies that are relatively simple to analyze can be used a benchmarks. For

example:

(a) An agent seeking to achieve its GT success threshold in its N runs could wait

to accept only tasks of the type 4 because that type has the highest average net

gain g4 = 100. The average searching time for each of these N tasks is 1/λ4 = 10

time units for each there is a cs search cost per unit time, and so the average total

gain after N = 300 tasks is (N)(g4 − cs/λ4) = (300)(100 − 0.1/0.1) = 29700,

and the average total time is (N)(τ4 + 1/λ4) = (300)(110 + 1/0.1) = 36000

time units. This strategy meets each of the four GT thresholds given, but each

mission is much longer. In particular, despite having an average mission time

51

N = 300 tasks per mission, 100 Monte Carlo samples

G
T
=

60
00 Take all CR ER eCR eER

ΣG: 16555± 35 10954± 17 20520± 24 11172± 113 16534± 46
@GT : 100% 100% 100% 100% 100%
ΣT : 11107± 42 4399± 9 9242± 13 4541± 55 9855± 32

G
T
=

90
00 Take all CR ER eCR eER

ΣG: 16565± 30 10946± 16 20473± 25 11218± 128 18119± 38
@GT : 100% 100% 100% 98% 100%
ΣT : 11119± 42 4391± 8 9227± 13 4567± 63 11668± 43

G
T
=

13
50
0 Take all CR ER eCR eER

ΣG: 16642± 33 10958± 16 25153± 11 11270± 103 18647± 44
@GT : 100% 0% 100% 5% 100%

ΣT : 11158± 38 4393± 8 15645± 42 4586± 50 12779± 46

G
T
=

16
50
0 Take all CR ER eCR eER

ΣG: 16546± 34 10993± 16 25141± 14 10965± 91 18796± 39
@GT : 55% 0% 100% 0% 100%

ΣT : 11092± 40 4421± 8 15605± 53 4440± 43 13120± 44

Table 1.2: Simulation results for prey-model-inspired agent simulation. Statistics are
generated by taking 100 Monte Carlo samples of a mobile agent with a mission that
ends after processing N = 300 tasks. Each agent faces an environment with with
a search cost rate cs = 0.1 value currency per unit time and five prey-model task
types described by the 3-tuples (λ1, g1, τ1) = (0.5, 30, 10), (λ2, g2, τ2) = (0.25, 50, 20),
(λ3, g3, τ3) = (0.4, 80, 35), (λ4, g4, τ4) = (0.1, 100, 110), (λ5, g5, τ5) = (0.8, 55, 50) of en-
counter rate (per unit time), average net gain (value currency), and average process
time (unit time). Five different task-choice scenarios are tested: the “Take all” strat-
egy processes all encountered tasks; the classical rate (CR) strategy uses the standard
prey model from classical OFT; the excess rate (ER) strategy uses a prey model based
on ER maximization; the estimated classical rate (eCR) strategy uses a simple heuris-
tic described by Pavlic and Passino [82] that converges to the prey model result; the
estimated excess rate (eER) uses a modified form of the eCR heuristic applied to ER
maximization. The four scenarios shown differ in their success threshold GT . Each
ΣG row gives the sample mean and standard error of the mean (SEM) for the total
accumulated gain for each of the five different strategies in each of the four different
scenarios. Similarly, the ΣT rows give the sample mean and SEM for total time, and
the @GT rows give the proportion of runs that met or exceeded the corresponding
success threshold GT . Particularly notable @GT rows have been emphasized in bold.

52

of more than double the average mission time of the excess rate (ER) strategy

for the GT = 16500 case, it returns less than 20% more value.

(b) An agent could wait to accept only tasks of type 1 because that type has the

highest profitability (i.e., net-gain–processing-time ratio). For N = 300 tasks,

the average total gain is then 8940, and the average total time is 3600 time units.

Despite this strategies high total-gain–total-time ratio, it completes theN = 300

tasks so quickly that it does not meet three of the example GT thresholds from

Table 1.2.

(c) An agent could wait to accept only tasks of type 3 because that type has

the highest ER profitability for the GT = 16500 and N = 300 case (i.e.,

argmaxi(gi−GT /N)/τi = 3). In this case, the average total gain is then 23925,

and the average total time is 11250 time units. This simple strategy achieves all

four success thresholds in less than a third of the time required for the strategy

in item (a) that also is uniformly successful.

Both of the single-type strategies in items (a) and (c) are successful, but they depend

upon a low search cost rate cs and a high encounter rate for their preferred task type.

If the environment is relatively sparse in tasks of the desired type, the agent will

engage primarily in costly searching as it ignores encounters with other types that

may be more frequent. A better strategy is to balance the benefits of waiting for

more profitable types with the benefits of reducing costly search time. Additionally,

reducing the time of missions allows mobile agents to be re-deployed more quickly

thus increasing the value returned overall.

53

Hence, the strategies in Table 1.2 represent different methods of prioritizing all

task types to achieve success thresholds to avoid pitfalls of the single-type case.

• The take-all strategy is provided as a multiple-type benchmark. An agent fol-

lowing the take-all strategy does not discriminate; the agent processes every

task encounter and the mission ends after exactly N encounters. As this strat-

egy does not depend upon the success threshold GT , its performance does not

vary across different GT selections. Consequently, for GT = 16500, the strategy

does worse than others that avoid low-gain tasks and instead search longer for

high-gain tasks.

• The classical rate (CR) strategy uses the classic prey model algorithm for task-

type choice. In this simulation, the strategy uses a priori knowledge of the

encounter rate λi and the profitability gi/τi of each task type i to group task

types into take-all and take-none sets. The encounter rates could also be esti-

mated as in Andrews et al. [9]; however, this idealized case is presented here

for comparison to the estimated classical rate (eCR) strategy described below.

Because the CR strategy is based on a rate-maximization assumption, the CR

strategy has a very high total-gain–total-time ratio. Hence, for missions limited

by time as opposed to number of tasks, it would likely return relatively high

gain. However, when task-processing opportunities are limited, the strategy

gives too much priority to task types with low processing times.

• The excess rate (ER) strategy uses the generalized prey model algorithm for

task-type choice. That is, it is identical to the CR strategy except that the

54

realized net gain from each task type i is gi − GT/N . Consequently, its task-

choice priorities vary with GT . Thus, moving from GT = 9000 to GT = 13500

causes a shift in task-choice priorities that leads to a behavior mode that has

a longer total mission time but also returns a higher total gain. As with the

CR strategy, the ER simulation here is performed with a priori knowledge of

encounter rates to compare its performance with the estimated ecess rate (eER)

strategy described below.

• The estimated classical rate (eCR) strategy uses the simple behavioral heuristic

described by Pavlic and Passino [82] to make process–ignore decisions. The

heuristic makes no use of encounter rates. Instead, it compares the recognized

profitability to the present total-gain–total-time ratio in order to determine

whether an encountered task should be processed. The eCR strategy has similar

performance as the CR strategy.

• The estimate excess rate (eER) strategy modifies the eCR behavioral heuristic

to match the ER maximization case. Consequently, its performance follows

behind the performance of the ER strategy.

Thus, the ER and eER strategies show that simple strategies exist that adapt to

different mission success thresholds by waiting longer for high-gain tasks without

depending on maximally long mission times. Moreover, the intuitive nature and

simple implementation of these strategies is ported from classical OFT through the

generalized framework described in this chapter.

55

1.5 Conclusions

In this chapter, we summarize several applications of foraging-inspired decision

making in robotics (e.g., autonomous air vehicles) and computer science (e.g., resource

allocation, web design), and we demonstrate that while the resulting algorithms are in-

tuitive and simple to implement, the OFT optimization objectives themselves may not

match engineering problems. We then introduce a single advantage-to-disadvantage

optimization objective that generalizes several of the existing objectives used in OFT,

and we also give four new models of finite-run-time optimality and show how each

of them are special cases of advantage-to-disadvantage optimization. Each finite-run-

time objective function includes a success threshold that mixes elements of classical

rate maximization with shortfall minimization (i.e., risk sensitivity). Additionally,

these four models provide optimization frameworks for the design of task-processing

agents that can only engage in a finite number of tasks (e.g., a vehicle that can only

deliver a finite number of packages to a practically infinite number of possible targets).

As we show in simulation, the general framework allows for the design decision-making

algorithms with similar attractive structures as OFT-inspired algorithms but better

performance in engineering applications.

We also show how a generic optimization framework provides a substrate on which

different optimal task-processing behaviors can be compared. For example, our anal-

ysis shows a relationship between rate and efficiency maximization, two approaches

that are usually viewed in opposition to each other. Additionally, our analysis shows

56

how the introduction of success thresholds challenges the invariance of task-type pref-

erence ordering, which is a key result of classical optimal foraging theory. These com-

parisons reveal which key features of different optimization metrics can lead to vastly

different behaviors in application.

Most applications of foraging theory to engineering focus on problems amenable to

optimal prey (i.e., task-type) choice or patch residence time (i.e., task-processing time)

solutions. However, Pavlic and Passino [81] apply foraging behaviors described by

Gendron and Staddon [35] to a fixed-wing AAV that may also choose its search speed.

In this case, the speed of the vehicle affects its detection accuracy. Increased speed

increases the encounter rate with task types that are easy to detect but decreases

the encounter rate with task types that are difficult to detect, and so predicting

the optimal combination of task-type choice and search speed is nontrivial. A further

complication is that increased speed can have increased costs (e.g., in fuel or calories).

Pavlic and Passino are able to extend the methods of Gendron and Staddon from two

task types to an arbitrary number of task types, but it comes at the cost of a simplistic

model of detection accuracy. However, the optimization objective is an advantage-to-

disadvantage function with an additional decision variable representing search speed.

Extending the methods described here to handle this case is a valuable future direction

that should provide more insights into complex task-processing behavior (e.g., when

more realistic models of detection accuracy are included).

57

Chapter 2: When Rate Maximization Is Impulsive

As discussed by Schoener [103] and Pyke et al. [92], an animal must make choices

that put upward pressure on both the number of prey encountered in its finite lifetime

and the gain (e.g., calories or another surrogate for Darwinian fitness) returned from

each prey. To attain maximum gain in minimum time, optimal foraging theory (OFT)

predicts that natural selection will favor behaviors that maximize the long-term rate

of gain [112]. However, in operant binary-choice experiments in the laboratory [e.g.,

1, 15, 20, 41, 62, 98, 104, 107, 110], animals will often make impulsive choices that

favor short handling times regardless of foraging gain. Conversely, as reviewed by

Giraldeau and Caraco [38, pp. 155–167], in experiments that do not force animals

to make binary-choice decisions, animals not only maximize their rate of gain but

also respond to changes in the environment by dynamically adjusting their behavior

to maintain maximal long-term rate of gain. That is, natural selection has gone so

far as to bestow on animals the ability to calculate rate-maximizing behaviors in

real time. In this chapter, we propose a simple behavioral strategy consistent with

real-time rate maximization in nature and show how it appears to be impulsive in

laboratory binary-choice experiments. Additionally, we show how rate maximization

in the laboratory can be restored with appropriate pre-experiment treatment. If our

58

hypothesis is shown to be empirically robust, then impulsiveness may be a behavioral

nuance that is immune to the effects of natural selection.

2.1 Background

2.1.1 Impulsiveness Without Discounting

As reviewed by Ainslie [2], early theories of impulsiveness are based on the as-

sumption of temporal discounting. Animals are assumed to discount future rewards

by some decreasing function of the time until the reward. As long as the discounting

function is sufficiently concave, a smaller-sooner reward can have greater value than

a larger-later reward. However, Stephens [109] argues that realistic discount rates

will be too shallow to impact laboratory experiments. In particular, animals with

relatively long lifetimes may value rewards today more than rewards tomorrow, but

a difference in delay of less than a minute should not be enough to cause a prefer-

ence reversal. Additionally, Henly et al. [46] show that likelihood of interruptions,

which is often used to justify the discounting hypothesis, has negligible impact on

impulsiveness observed in the laboratory.

To explain impulsiveness without discounting, recent attention focuses on how lab-

oratory methods may artificially bias subjects toward impulsive behaviors. Arguing

that impulsiveness is the result of an informational constraint, Stephens and Ander-

son [110] and Stephens et al. [114] show how a simple rule leads to impulsive decisions

in the typical binary-choice schedule and rate-maximizing decisions in a sequential-

choice schedule, but evidence from Stephens and McLinn [113] suggests that animals

do not use the same choice rule in both contexts. In a different experiment, pigeons

whose attention is trained on a larger-later option lose their impulsive tendencies [104],

59

which leads Monterosso and Ainslie [65] to suggest that impulsiveness may be the re-

sult of attention and not deliberate choice. To investigate state-dependent effects,

Houston and McNamara [50] use a dynamic programming model to show that an im-

pulsive strategy minimizes probability of starvation when an animal is in a low-energy

state. This result agrees with studies [e.g., 20, 107] that show that animals are more

likely to prefer smaller-sooner alternatives when they are subjected to greater food de-

privation. Because food deprivation accompanies conventional operant methodology,

this result may explain all observed laboratory impulsiveness; however, the model of

Houston and McNamara is based on a sequential-choice assumption that is rarely met

in the mutually exclusive binary-choice experiments used in most tests of impulsive-

ness. Here, we describe a simple behavioral mechanism that leads to impulsiveness

under typical operant conditioning and rate maximization otherwise. As this single

mechanism is highly influenced by both the subject’s attention and energetic state,

it synthesizes ideas from the three different approaches to explaining impulsiveness

without discounting.

2.1.2 A Graph of the Prey Model

A detailed discussion of classical OFT is given by Stephens and Krebs [112]. Here,

we summarize a central OFT result and recreate a useful graphical interpretation first

presented by Charnov [25]. Consider a forager that searches through its environment

for n ∈ N types of prey. Encounters with prey of type i ∈ {1, 2, . . . , n} come from

an independent Poisson process with rate λi > 0, and those type-i prey that are

chosen for processing return an average gi gain (e.g., calories) to the forager after an

average hi handling time. When not handling prey, the forager pays a cost c per unit

60

search time (i.e., c is a cost rate). Assuming that natural selection favors foraging

behaviors that maximize lifetime gain, the optimal behavior should trade large reward

per encounter for increased number of encounters (i.e., less time per encounter), and

so an optimal behavior maximizes the long-term average rate

R ,

−c +
n∑

i=1

λipigi

1 +
n∑

i=1

λipihi

(2.1)

where pi ∈ [0, 1] represents the probability that the forager processes an encounter

with a prey of type i. Each behavior is represented by a particular collection (p1, p2,

. . . , pn) representing the diet of the forager.

The central result of this so-called contingency model [25, 91] or prey model [112]

is that if prey types are ordered so that

g1
h1

>
g2
h2

> · · · > gn−1

hn−1
>

gn
hn

,

then an optimal behavior is to process all encounters with prey of type m ≤ k∗ and

to ignore all encounters with prey of type m > k∗ where k∗ ∈ {0, 1, 2, . . . , n} is the

smallest k that satisfies

−c +
k∑

i=1

λigi

1 +
k∑

i=1

λihi

>
gk+1

hk+1

.

Consequently,

Processed types
︷ ︸︸ ︷
g1
h1

>
g2
h2

> · · · > gk∗

hk∗
>











Optimal rate
︷ ︸︸ ︷

R∗ ,

−c+
k∗∑

i=1

λigi

1 +
k∗∑

i=1

λihi











>

Ignored types
︷ ︸︸ ︷
gk∗+1

hk∗+1

> · · · > gn−1

hn−1

>
gn
hn

(2.2)

where the optimal rate R∗ partitions the list of profitabilities (i.e., the ratio gi/hi

for each type i) into an acceptable set and an unacceptable set. This result, which

61

Handling time
P
ro
ce
ss
in
g
ga
in

For type i: or @ (handling time hi, gain g(hi))

(h1, g1)

(h2, g2)

(h3, g3)

(h4, g4)

(h5, g5)

Pr
oc
es
s

Ig
no
re

R∗

Figure 2.1: Graphical summary of prey model result. For a prey type i ∈ {1, 2, 3, 4, 5},
the average handling time hi and average gain gi is plotted as a dot. The maximum
long-term rate of gain R∗ is the slope of the dashed line which separates the processed
types, 1, 2, and 3, from the ignored types, 4 and 5. The profitability of each type is
the slope of the dotted line connecting the origin to its (gain, time)-coordinate.

is known as the zero–one rule [112], is shown graphically in Figure 2.1. For each

type, a solid dot is plotted with the type’s average handling time as its abscissa and

the type’s average processing gain as its ordinate, and so the slope of each dotted

line corresponds to the profitability of the corresponding type. If the optimal long-

term rate of gain is R∗, then the dashed line with slope R∗ divides the plane into an

acceptable upper region and an unacceptable lower region. In this example, the three

steep lines corresponding to types 1, 2, and 3 are contained in the acceptable region,

and the shallow lines corresponding to types 4 and 5 are contained in the unacceptable

region, and so k∗ = 3 in Equation (2.2). As encounter rates of acceptable types

increase or decrease, the dashed line rotates to exclude or include more types.

62

2.1.3 Justification for Adaptive Rate-maximization Model

Optimal foraging theory describes the ultimate behaviors favored by natural se-

lection [112]. In the example in Figure 2.1, a heritable preference for only the three

highest-profitability types will readily spread through future generations of the popu-

lation. If an environmental disaster causes encounter rates to fall sharply, then more-

inclusive heritable preferences present in the background population will successfully

invade and dominate future generations of the population. So optimal foraging theory

posits that rate-maximizing behaviors will be the adaptive outcome of the gradual

process of natural selection. However, Giraldeau and Livoreil [39] show that birds in

the laboratory respond to a sharp change in the environment with a new behavior that

matches the long-term rate-maximizing behavior predicted by OFT. This response is

consistent with real-time calculation of the optimal rate-maximizing behavior. More-

over, in a survey by Sih and Christensen [105] of 74 recent foraging studies, 22 studies

are given that show animals flexibly adapting to their experimental scenarios in a way

that is at least qualitatively consistent with optimal foraging theory. Thus, OFT may

also be viewed as describing the proximate outcome of dynamic behaviors that adapt

to changing environments.

2.1.4 Other Ostensible Violations of Rate Maximization

Impulsiveness describes only a subset of behaviors that appear to violate rate

maximization. In the recent survey by Sih and Christensen [105] of 60 foraging

studies originally surveyed by Stephens and Krebs [112] as well as 74 more recent

studies, optimal foraging theory is shown to have mixed success in describing animal

behavior. Sih and Christensen argue that the prey model is a poor descriptor of the

63

foraging behaviors of animals with mobile prey. However, even in herbivores [48, 121]

and molluscivores [94, 119] that have essentially immobile prey, optimal foraging

theory fails to predict the observed diet preferences. In these cases, the digestive rate

model [DRM; 47, 49, 121] is shown to better predict animal diet preference, but the

DRM itself is the result of generalizing the prey model (i.e., rate maximization) to

include the effect of digestive constraints.

The DRM of Hirakawa [47] is a correction of related foraging constraint models

from Pulliam [91], Stephens and Krebs [112], and Verlinden and Wiley [121]. It

maximizes the same rate expression from Equation (2.1); however, it also introduces

the material intake rate

X ,

n∑

i=1

λipiki

1 +
n∑

i=1

λipihi

(2.3)

where ki is the average quantity (e.g., mass) of ingested material from prey of type i.

Depending on whether the material is a nutrient or a toxin, the intake rate X will

have a lower or upper bound, respectively. In the molluscivore shorebird examples

described by van Gils et al. [119] and Quaintenne et al. [94], X represents the intake

rate of ballast material (e.g., shells of bivalves and snails). When the gizzard of

one of these cropping birds is full, the bird must pause its foraging behavior until

its gizzard has emptied enough for it to continue. Thus, these shorebirds have a

maximum intake rate of ballast material that is not negligible. A key result of the

DRM is that prey types should not be ordered by profitability as in Equation (2.2);

instead, they should be ordered by so-called (digestive) quality which is defined by

gi/ki for each type i. The DRM gives an algorithm to find the prey type whose

quality partitions the group into take-always and take-never groups. However, only a

64

fraction of encounters with prey of the partitioning type should be ingested. Hence,

even though the DRM is the result of rate maximization under a constraint, its result

both re-orders prey preferences and appears to violate the zero–one rule. Although

our main focus is to present a simple model of foraging that explains impulsiveness

in the laboratory, we shall also show how our simplified model has similar qualitative

features as the DRM. In particular, our DRM-consistent behavioral model reconciles

the differences between rate maximization and DRM using an internal handling time

approach, which is similar to the ecological–physiological hybrid method described

by Whelan and Brown [125].

2.2 Model

2.2.1 State-based Real-time Adaptive Rate-maximization

Using a version of the prey model of Stephens and Krebs [112] put into an en-

gineering context, Andrews et al. [7] and Quijano et al. [97] implement a heuristic

algorithm that achieves real-time rate maximization through computation of an es-

timated optimal behavior. In particular, on encounter with a prey of type i, the

algorithm estimates the encounter rate λi and then updates its exclusion rule based

on Equation (2.2) assuming that the present λi estimate is correct. That is, the algo-

rithm calculates the optimal rate R∗ based on the estimated rates and then updates

its prey model exclusion policy based on that estimated optimal rate.

Instead of estimating each of the n encounter rates to find the critical k∗, our

algorithm keeps a running estimate of the long-term rate of gain R by dividing total

accumulated gain by total time. Then, on each encounter, the forager compares the

encountered prey’s profitability with the current R estimate and rejects the prey if

65

its profitability is lower than R. By accepting prey with super-R profitability and

rejecting those with sub-R profitability, processed prey only cause the estimated R to

rise. Between processed encounters, the R estimate falls due to the effect of increased

time without increased gain. Over time, the oscillating R estimate converges on the

optimal R∗; hence, the process–ignore policy converges to the prey model described

by Equation (2.2). This method is essentially an application of the patch model

of Stephens and Krebs [112] applied to a forager whose processing-length decision

is limited to leaving immediately or staying for a patch’s entirety. Not only does

this strategy have less computational complexity than those based on encounter-

rate estimation, but it has an intuitive state-based interpretation; when the forager’s

present energy stores are low (i.e., when R is low due to low accumulated gain or

high total running time), the forager becomes more inclusive. We caution that this

is a loaded interpretation. Among other things, it neglects the effects of non-foraging

activities (e.g., reproduction) that both depress present energy stores and take time.

However, although a forager’s instantaneous energy stores may be a poor estimator of

R, low-frequency trends in the energy store signal should correlate well with R. For

example, it may be maladaptive for momentary hunger to drive foraging decisions,

but it persistent hunger is an important signal that the forager should generalize

more. Furthermore, we show later that a small adjustment to this model accounts for

optimal foraging under digestive rate constraints. In that case, a stronger connection

exists between energy state and R (e.g., high R may indicate that less bulky foods

should be preferred).

Our algorithm is depicted in Figure 2.2(a). The solid line represents the trajectory

of the gain of the forager over time. Each dotted line has a slope matching one of the

66

t: Total search and handling time

G
(t
):

A
cc
u
m
u
la
te
d
n
et

ga
in

Type-# encounter: # (Process) or # (Ignore)

g1
h1

g2
h2

g3
h3

g4
h4

g5
h5

R∗

1

2

2

1

3 3

4 5

(a) Classical model.

t: Search and non-ballast handling time

G
(t
):

A
cc
u
m
u
la
te
d
n
et

ga
in

Type-# encounter: # (Process) or # (Ignore)

g1
h1 + κ1

g2
h2 + κ2

2

2 1

2 2

1

2 2

2

(b) DRM case.

Figure 2.2: Adaptive long-term maximizer trajectory. The solid line represents a
forager’s accumulated gain over time. Each encounter with a new prey is shown with
as a circle or a diamond surrounding the prey’s type. Encounters shown with a circle
are chosen for processing and encounters shown with a diamond are ignored. Hence,
jumps in the gain trajectory occur at circled encounters. Encounters that occur below
the prey type’s profitability slope are processed; otherwise, encounters are ignored.
In (a), profitability is defined in the classical way as gi/hi for each type i, and the
gain trajectory converges on a line with slope R∗, which is the maximum long-term
rate of gain. In (b), profitability is defined as gi/(hi + κi) (or, alternatively, gi/κi

with similar results) where κi has units of time and is proportional to ki, and the gain
trajectory converges on the profitability line of the partially preferred prey type.

67

n profitabilities. The estimated rate R at each encounter is the slope of an imaginary

line drawn from the origin to the gain trajectory at that time. If the profitability of an

encountered prey is steeper than the present R estimate, then the prey is processed,

and the current R estimate increases; otherwise, the prey is ignored. Encounters

are shown in this depiction as points on the gain trajectory. Those encounters that

are processed are shown as circles, and encounters that are ignored are shown as

diamonds. So an encounter is processed if its graph location, which corresponds to

the estimated R at the time of the encounter, is below the dotted profitability line

of its task type. For this example trajectory, the first four encounters are chosen for

processing because they fall below their corresponding profitability lines. The fifth

encounter is with a prey of type 3, and it is ignored because it falls above the third

profitability line. Even though the sixth encounter is also with a prey of type 3, it is

chosen for processing because enough time has passed to depress the estimated rate

R. As time continues, the estimated rate R eventually converges to the maximum

long-term rate of gain R∗, which is shown as the slope of the dashed line.

2.2.2 State-based Real-time Adaptive Model Consistent with

DRM

With only a small modification, the adaptive rate-maximization model can be

made to be consistent with the qualitative predictions of the DRM. In particular, for

each type i, let ballast time κi be a parameter with units of time that is proportional

to the quantity ki. For example, κi may be viewed as the average amount of time

prey of type i spend in the gizzard of a molluscivore shorebird. If the profitability

gi/hi for each type i used by the forager to determine whether a particular encounter

should be accepted or rejected is replaced by the gi/(hi + κi) or simply gi/κi, then

68

the gain trajectory will follow (i.e., continually switch across) one of the profitabil-

ity lines. The prey type corresponding to the switching line will also represent the

prey that is only partially preferred. The other prey types will be preferred via the

zero–one rule. This modified process is depicted in Figure 2.2(b). Hence, the in-

troduction of internal handling time κi mitigates the need for a hard digestive rate

constraint, which is similar to the ecological–physiological hybrid model described by

Whelan and Brown [125] that also models internal handling time. Coopting their ex-

ample, we notice that in our model, as R increases (e.g., stomach fills), calorie-dense

foods (e.g., cookies) may be preferable over high-bulk foods (e.g., salad) even though

profitabilities may be similar, which matches conventional human experience.

Although this algorithm may not accurately described the proximate mechanisms

for decision making in foragers with digestive constraints, it may provide helpful in-

tuition for visualizing DRM results. Additionally, if the ballast-time proportionality

constant (i.e., κi/ki for each type i) is identical across all types and digestive prof-

itability is defined as gi/(hi+κi) for each type i, then this model behaves as a classical

rate maximizer when hi is much larger than κi and as a digestively constrained forager

when κi is much larger than hi. Hence, the previous model is a limiting case of this

model; as ballast times become vanishingly small, the acceptance proportion of the

partially accepted prey type approaches unity or nullity. Thus, this simple behavioral

model reconciles differences between classical optimal foraging theory models and di-

gestive constraint models. Moreover, this model justifies the otherwise questionable

use of energy availability (e.g., hunger) as an estimator of R. In the case of pure

rate maximization, an animal in a should only use its energy state as an estimator

of a low R if its energy stores are persistently low. However, when using digestive

69

profitability (i.e., when including ballast effects), using energy stores as an estimator

of R implicitly accounts for digestive constraints; less bulky foods should be preferred

when R is high.

2.3 Results

The most prevalent foraging models used in OFT make the simplifying assumption

that encounters with more than one prey at a time occur with zero probability [23].

This assumption does not lack realism. A forager that searches for sparse stationary

morsels of food may rarely encounter items simultaneously, and even when it does, its

choices need not be mutually exclusive. If such an environment is the source of natural

selection, then it makes sense that the animal’s behavior may be poorly adapted for

the mutually exclusive, simultaneous encounter, binary-choice experiments of the con-

ventional operant laboratory. Here, we show how our real-time algorithm is impulsive

under traditional laboratory conditions and maximizes long-term rate of gain under

natural conditions. We also show how our DRM-inspired real-time algorithm results

in foraging preferences consistent with results from the DRM. All simulations were

implemented using Matlab ((R14SP3) The MathWorks, Natick, MA, USA), and all

Matlab source code is available as an electronic supplement (see S1 Appendix).

2.3.1 Simulation: Simultaneous Encounters Lead to Subop-

timality

A simulated trajectory for our algorithm over 100-s is shown in Figure 2.3(a)

where n = 2, (λ1, g1, h1) = (2-s−1, 5, 2-s), (λ2, g2, h2) = (5-s−1, 1, 1-s), and c = 0.1-s−1.

So type 1 has the highest profitability and type 2 has the lowest average handling

time. For each type, the gain and handling time have nonzero variance and positive

70

correlation. Additionally, on an encounter with a single prey, there is a 5% probability

that the forager will make an algorithmic mistake. In this simulation, encounters with

each type come from separate and independent Poisson processes, and so simultaneous

encounters occur with zero probability. However, in the rare case of a simultaneous

encounter, this forager arbitrarily attends to the prey with the lower average handling

time first with a 95% probability. This assumption of biased attention is motivated by

the training experiment of Siegel and Rachlin [104] and the suggestion by Monterosso

and Ainslie [65] that impulsiveness may be the result of attention span and not

deliberate choice. In this example, the steady-state foraging behavior accepts all

high-profitability encounters and rejects all low-profitability encounters, and the gain

trajectory behaves like a line with R∗ slope. Because this behavior eventually achieves

the maximum long-term rate of gain, it is eligible for proliferation by natural selection.

In Figure 2.3(b), a simulated trajectory for the same behavior that maximizes

its long-term rate in Figure 2.3(a) is shown when facing simultaneous and mutually

exclusive encounters at rate λ = 2-s−1. Because it attends to the prey with the lower

average handling time first and the experimenter removes the other prey on each

encounter, the trajectory achieves a suboptimal long-term rate R∗
type-2-only, and the

experimenter concludes that the forager is not a rate maximizer. However, the rate

R∗
type-2-only is the maximum rate in an environment with only the low-profitability

type. Under these experimental conditions, the estimated rate is initially very low,

and so the low-profitability prey are initially acceptable for processing. Because the

forager attends to these prey first and the experimenter immediately removes the other

prey, the new estimated rate R remains too low to exclude the next encountered low-

profitability type. Hence, the forager never experiences high-profitability prey gains

71

Time

A
cc
u
m
u
la
te
d
n
et

ga
in

g1
h1

g2
h2

R∗

(a) Behavior facing merged Poisson en-
counters.

Time

A
cc
u
m
u
la
te
d
n
et

ga
in

g1
h1

g2
h2

R∗

R∗
type-2-only

(b) Behavior facing simultaneous en-
counters.

Figure 2.3: Simulation of an adaptive and impulsive foraging behavior facing dif-
ferent encounter processes. In the 100-s foraging bout, the forager encounters high-
profitability prey of type 1 (g1 = 5, h1 = 2-s) and low-handling-time prey of type 2
(g2 = 1, h2 = 1-s). During search, it pays cost c = 0.1-s−1. On an encounter with a
prey, it is chosen for processing if its profitability is greater than the quotient of the
accumulated gain and total lifetime, and the forager makes a mistake in this calcu-
lation with 5% probability. On simultaneous encounters, the forager attends to the
prey with lowest handling time first with 95% probability (i.e., its attention is impul-
sive). In (a), encounters come from a merged Poisson process with rates λ1 = 2-s−1

and λ2 = 5-s−1, and the behavior is optimal. In (b), encounters are simultaneous
and mutually exclusive with rate λ = 2-s−1, and the same behavior is suboptimal. In
particular, the performance in (b) is optimal in an environment of only type 2 prey.

72

and is destined for poor performance. If these operant laboratory conditions (i.e.,

starvation followed by sequences of mutually exclusive binary-choice trials) are unlike

those in nature, this short-time attentive foraging strategy may still maximize its long-

term rate of gain in nature and thus will still be present in the animal population.

2.3.2 Simulation: Pre-experiment Feeding Restores Optimal-

ity

This hypothesis can be tested by preloading the forager’s gain trajectory immedi-

ately before the experiment (e.g., to alleviate any persistent hunger signals that drive

the forager to be maximally inclusive). The trajectory in Figure 2.4(a) is the result

of a second simulation with merged Poisson encounters; however, during the first two

seconds of the experiment, the forager faces very frequent encounters with prey of a

very high profitability gp/hp. As a consequence, the trajectory rises very quickly and

then plateaus off until the estimated rate of gain falls below the profitability of type 1.

After that time, the forager follows a typical rate-maximizing trajectory. Similarly,

the trajectory in Figure 2.4(b) is the result of a second simulation with simultaneous

and mutually exclusive encounters, but the forager is given the same initial two-second

feeding period in order to bias its behavior into a rate-maximizing mode. As with

the previous case, the gain rises steeply and then plateaus until the point where the

estimated gain falls below the profitability of type 1. After that time, the previously

impulsive behavior follows a true rate-maximizing trajectory. That is, because the

estimated rate is so high, the forager never attends to the low-profitability type; it

ceases to appear impulsive. This restoration of rationality will rarely occur under con-

ventional operant methods because those subjects are typically intentionally deprived

of food outside of the experimental apparatus [e.g., 20, 41, 104, 107, 110, 113].

73

Time

A
cc
u
m
u
la
te
d
n
et

ga
in

gp
hp

g1
h1

g2
h2

R∗

(a) Behavior facing merged Poisson en-
counters.

Time
A
cc
u
m
u
la
te
d
n
et

ga
in

gp
hp

g1
h1

g2
h2

R∗

R∗
type-2-only

(b) Behavior facing simultaneous en-
counters.

Figure 2.4: Simulation of an impulsive foraging behavior after initial ad libitum
feeding period. In most of the 100-s foraging bout, the forager encounters high-
profitability prey of type 1 (g1 = 5, h1 = 2-s) and low-handling-time prey of type 2
(g2 = 1, h2 = 1-s). However, during the first 2-s of the bout, the forager encounters
type-p prey of very high profitability and very high rate (λp = 10-s−1, gp = 5, hp =
0.2). During search, it pays cost c = 0.1-s−1. On an encounter with a prey, it is
chosen for processing if its profitability is greater than the quotient of the accumulated
gain and total lifetime, and the forager makes a mistake in this calculation with 5%
probability. On simultaneous encounters, the forager attends to the prey with lowest
handling time first with 95% probability (i.e., its attention is impulsive). In (a),
encounters come from a merged Poisson process with rates λ1 = 2-s−1 and λ2 = 5-s−1,
and in (b), encounters are simultaneous and mutually exclusive with rate λ = 2-s−1.
In both cases, the behavior is optimal.

74

2.3.3 Simulation: Equal-opportunity Foragers and Simulta-

neous Encounters

Another set of simulated simultaneous-encounter trajectories of our algorithm is

shown in Figure 2.5. However, in these examples, the forager has unbiased atten-

tiveness. That is, in the case of a simultaneous encounter with two prey, the forager

attends first to one of them at random following a uniform distribution. Under merged

Poisson encounters, this behavior will still maximize the forager’s long-term rate of

gain because simultaneous encounters are so rare. However, when encounters are

artificially made by an experimenter to be simultaneous and mutually exclusive, the

foraging behavior is not guaranteed to maximize the long-term rate. In particular,

runs can be put into two groups characterized by Figures 2.5(a) and 2.5(b). In the

former case of Figure 2.5(a), the gain accumulates initially fast enough to exclude the

low-profitability type from consideration by the algorithm, and the foraging behavior

achieves the optimal long-term rate of gain R∗. In the latter case of Figure 2.5(b), the

equal-opportunity foraging behavior achieves a long-term rate of gain R∗
depressed equal

to the optimal long-term rate of gain when encounter rates are halved. Hence, forcing

animals to make mutually exclusive decisions about repeated simultaneous encounters

has the effect of scaling encounter rates by the animal’s attention pattern. However,

as with the impulsive behavior, a rate-maximizing result like the one shown in Fig-

ure 2.5(a) can be forced by preloading the forager with an ad libitum feeding period

to ensure the initial behavior is as exclusive as possible (i.e., ensuring that the ini-

tial rate R estimate is relatively high). Again, treating animals with pre-experiment

feeding is uncommon in conventional operant laboratory methods because animals

are starved to enforce compliance with the experimental apparatus. Unfortunately,

75

Time

A
cc
u
m
u
la
te
d
n
et

ga
in

g1
h1

g2
h2

R∗

R∗
depressed

(a) Rate-maximizing run.

Time

A
cc
u
m
u
la
te
d
n
et

ga
in

g1
h1

g2
h2

R∗

R∗
depressed

(b) Maladaptive run.

Figure 2.5: Equal-opportunity behavior facing simultaneous encounters. During the
100-s foraging bout, the forager encounters high-profitability prey of type 1 (g1 = 4.5,
h1 = 2-s) and low-handling-time prey of type 2 (g2 = 1.6, h2 = 1-s). All encounters are
simultaneous and are generated by a Poission process with a 1.7-s−1 encounter rate.
During search, the forager pays cost c = 0.1-s−1. On an encounter with a prey, it is
chosen for processing if its profitability is greater than the quotient of the accumulated
gain and total lifetime, and the forager makes a mistake in this calculation with 5%
probability. On simultaneous encounters, the forager randomly attends to one of the
encountered prey. In the typical run shown in (a), the gain trajectory converges to
the rate-maximizing optimal result. In another typical run shown in (b), the gain
trajectory converges to a result congruent with rate maximization if encounter rates
were halved.

76

it is possible that starved preferences are overly inclusive; a starved individual may

eat foods that it would rarely choose willingly in its natural environment.

2.3.4 Simulation: DRM-inspired Rule has DRM-like Prefer-

ences

In Figure 2.6(a), the gain trajectory for a forager using the DRM-style decision

algorithm is shown. The gain trajectory switches across the profitability line for

type 2. Moreover, as shown in Figure 2.6(b), the prey types are partitioned into a

set of always-accepted types, always-rejected types, and a single partially accepted

type (i.e., type 2 in this example). Similar results can be found by defining digestive

profitability as gi/κi for each type i, which guarantees the same type ordering as the

DRM model provided that the proportionality constant (i.e., κi/ki for each type i) is

identical across all types. However, when digestive profitability is defined as gi/(hi +

κi) for each type i, then this forager behaves as a traditional rate maximizer when hi

is significantly larger than κi.

2.4 Discussion

2.4.1 Binary-choice Impulsiveness can be Sequentially Opti-

mal in Nature

In the laboratory, animals forced to make a choice between two mutually exclusive

alternatives show an impulsive tendency for short handling time even when that

behavior fails to maximize long-term rate of gain. We have shown that animals that

are impulsive in binary-choice experiments can still be rate maximizers in nature.

Our hypothesis is that on an encounter with a prey, the animal chooses to process

the prey based on whether the prey’s gain–time ratio is greater than the animal’s

77

Handling and search time (no ballast time)

A
cc
u
m
u
la
te
d
n
et

ga
in

i : Digestive profitability line for type i

g1
h1 + κ1

1

2

3

4

g5
h5 + κ5

5

(a) Gain trajectory.

0

0.25

0.50

0.75

1.00

0 1 2 3 4 5

Types (ordered by digestive profitability)

P
ro
p
or
ti
on

of
en
co
u
n
te
rs

ac
ce
p
te
d

(b) Diet preferences.

Figure 2.6: Simulation of a DRM-inspired foraging behavior that has DRM-like
results. During the 100-s foraging bout, the forager encounters prey of types 1
(λ1 = 1-s−1, g1 = 3, h1 = 0.5-s, κ1 = 5-s), 2 (λ2 = 0.75-s−1, g2 = 5, h2 = 2-s,
κ2 = 5-s), 3 (λ3 = 0.75-s−1, g3 = 4, h3 = 0.25-s, κ3 = 4-s), 4 (λ4 = 1-s−1, g4 = 4,
h4 = 0.5-s, κ4 = 3-s), and 5 (λ5 = 0.1-s−1, g5 = 5, h5 = 0.1-s, κ5 = 3-s) according
to a five-way merged Poisson process. The prey types are ordered by digestive prof-
itability, which is defined as gi/(hi + κi) for each type i. In this example scenario,
there is no search cost (i.e., c = 0-s−1). On simultaneous encounters (which occur
with probability 0 due to the merged Poisson process), the forager attends to the prey
with lowest handling time first (i.e., its attention is impulsive). The gain trajectory
is shown in (a), and the proportion of encounters that are accepted is shown in (b).
As shown, prey of type 1 are always accepted, prey of types 3, 4, or 5 are always
rejected, and prey of type 2 are accepted on 25% of encounters with them.

78

present accumulated gain–total time ratio. In the rare case when multiple prey are

encountered at the same time, the animal arbitrarily attends to the one with shortest

handling time first. Because these cases are so rare, the animal’s attention pattern

has little impact on its lifetime success. However, because laboratory encounters are

always simultaneous and mutually exclusive, the food-deprived animal fails to make

good decisions.

To test this hypothesis, animals can be given a short ad libitum feeding period

directly before testing. This feeding period should raise their gain–time ratios so that

the purely impulsive choice is not a viable alternative. If this hypothesis is robust,

then impulsiveness may not be a curiously irrational behavior so much as a behavioral

polymorphism that is normally masked to the effects of natural selection. Addition-

ally, this simple behavioral algorithm may provide intuition for understanding com-

plex state-based animal behavior. An important future direction is the testing of this

theory in the laboratory; however, it is consistent with previous experiments [e.g.,

20, 107] that show that impulsiveness is reduced when animals have more access to

food. Additionally, the R process is is a discrete-time denumerable Markov chain, and

it is likely that the convergence we have demonstrated in simulation can be shown

analytically via mathematical proof. To establish confidence that this algorithm is a

robust rate maximizer, the stochastic convergence of R should be analytically char-

acterized.

A notable weakness of the central hypothesis of this chapter is that it takes for

granted that the animal attends first to prey with short handling times when facing

simultaneous encounters. The salient feature of this assumption is that the ani-

mal’s attention modulates the perceived encounter rates of encountered prey, which

79

is consistent with the attention-training experiment of Siegel and Rachlin [104] and

the conclusion of Monterosso and Ainslie [65] that impulsiveness may be linked to

attention and not choice. If the forager only sees simultaneous encounters with a

low-profitability short-time prey and a high-profitability long-time prey and always

attends to the short-time prey first, it is as if the high-profitability prey has a null

encounter rate. Moreover, an equal-opportunity forager facing all simultaneous en-

counters may also appear to be overly inclusive to short-time prey. During the period

of time where its initial rate estimate is low enough to consider the low-profitability

short-time prey, the forager forced to make mutually exclusive choices on each si-

multaneous encounter will behave as if it were facing encounter rates that are halved

and thus will continue to be overly inclusive. It is true that a forager that attends

first to high-profitability prey on simultaneous encounters will outperform others in

binary-choice experiments. However, if simultaneous encounters are rare in nature, it

is unlikely that natural selection will have shaped these attention mechanisms, and a

wide variation of attention schemes may be present in a background population. Fur-

thermore, the assumption that animals exhibit their natural preferences when starved

seems flawed regardless of the underlying behavioral mechanism. This chapter serves

as an example of how starved preferences can be unique.

2.4.2 A Mechanism Consistent with Digestive Rate Model

We have also shown how a simple modification to the our rate-maximizing behav-

ior leads to adaptive diet choices that are qualitatively consistent with the digestive

rate model of digestively constrained rate maximizers. In particular, the mechanism

automatically orders types by digestive profitability, which is a quantity similar to

80

digestive quality in the DRM, and results in partial preference for a single prey type

that partitions the other prey types into a set of always-accepted and always-ignored

types. To construct digestive profitability, we defined an internal ballast time that

is likely proportional to the material quantity used in DRM constraints. Hence, di-

gestive profitability for each type is the ratio of its average gain to the sum of its

handling time and ballast time. Like the approach of Whelan and Brown [125], this

model achieves qualitatively similar results as DRM without a hard digestive rate

constraint. Like the short-time attentive rate-maximizing mechanism we introduced,

this DRM-consistent mechanism may also be prone to maladaptive impulsiveness in

the case of simultaneous encounters. However, our objective in presenting this simple

DRM-consistent behavioral model is to suggest intuition for visualizing DRM results

and reconciling differences between ecological and physiological schools of foraging

thought. For example, our model shows clearly how a forager with high energy stores

may prefer the less bulky of two items with equal profitability while a forager with low

energy stores will accept both. An important future direction is to precisely define

what a ballast time is in nature.

81

Chapter 3: The Sunk-cost Effect as an Optimal

Rate-maximizing Behavior

Influential work by Schoener [103] postulates that natural selection favors behav-

iors on a continuum from foraging time minimization to net energetic gain maximiza-

tion. Techniques developed by Pyke et al. [92] and Charnov [23] use gain-to-time rate

maximization to quantitatively predict which behavior from this continuum will be

favored in particular cases. These techniques have been popularized by Stephens and

Krebs [112] as the prey and patch models of classical optimal foraging theory (OFT).

They respectively describe which prey foragers should include in their diet and how

long foragers should exploit a patch of prey, which are the two central questions of

solitary foraging theory.

The rate-maximizing prey and patch models have mixed success in explaining

behavioral observations in the field. The prey model accurately describes patterns

of preference, and the patch model makes accurate predictions about how foraging

durations should change when background parameters change, but the patch model

has poor success in many cases when predicting actual foraging durations [69, 105,

112]. In a review by Nonacs [69], several examples are picked that show foraging

durations tend to be longer than expected by the classical patch model. Nonacs

concludes that OFT is incomplete and that optimal behavior is not described by

82

rate maximization. However, recent studies show how observed behaviors that are

inconsistent with classical OFT are indeed rate maximizing under an adjusted foraging

model. For example, shorebirds that appear to violate classical OFT are shown to be

rate maximizers when explicitly modeling digestive constraints [119] and the value of

information discovery [118].

Here, we show how explicitly modeling foraging costs can answer Nonacs’ crit-

icisms of the classical OFT’s underpredictions of foraging duration. Additionally,

we show how the same modifications lead to foraging theoretic explanations of the

sunk-cost effect [10, 11, 56, 108], which describes behaviors that invest more time in

the more costly of two otherwise equivalent resources. This effect is also known as

the Concorde fallacy [27] because it describes an apparent logical fallacy analogous

to the continued development of a supersonic jet that never returns a profit. How-

ever, by giving a foraging theoretic explanation, we show that the fallacy is actually

an optimal behavior. This explanation is also consistent with observations of ani-

mals that commit longer feeding times after moving into areas where prey requires

greater energy to acquire [68]. Additionally, if a forager’s uncertainty in estimating

patch quality is modeled as an initial average cost associated with each patch type,

the extended foraging durations predicted by our augmented OFT is consistent with

the “wait for good news” behaviors predicted and observed in supposed Bayesian

foragers [73, 74, 118].

This chapter is organized as follows. First, in Section 3.1, we summarize the

principal results from classical OFT. Next, in Section 3.2, we present a common

empirical criticism of OFT and provide a mathematical response supporting OFT.

In Section 3.3, we augment the traditional graphical analysis method from OFT

83

to include effects of search and in-patch costs. This analysis shows how explicitly

including costs leads to longer patch residence times that are more consistent with

observed behavior. We use similar graphical methods in Section 3.4 to provide a

detailed explanation of the sunk-cost effect as an adaptive rate-maximizing behavior.

Finally, in Section 3.5, we give some concluding remarks.

3.1 Classical Optimal Foraging Theory

Optimal foraging theory models a forager that faces n ∈ N types of prey. The

forager encounters prey of type i ∈ {1, 2, . . . , n} according to an independent Poisson

counting process with rate λi > 0. Each encountered prey item of type i is picked for

handling with probability pi ∈ [0, 1], and those chosen items are exploited for τi ≥ 0

time on average. The forager pays a cost (e.g., energy) of cs per unit search time, but

it receives an average reward of gi(τi) after handling an item of type i. Assuming that

natural selection favors foragers that maximize their lifetime gain, behaviors should

trade increased reward per encounter for increased number of encounters in a lifetime.

So the optimal behavior will maximize the rate

−cs +
n∑

i=1

λipigi(τi)

1 +
n∑

i=1

λipiτi

. (3.1)

The prey model treats the case where τi is fixed for each type i and the forager must

make a binary choice to handle or ignore each encountered prey. The patch model

treats the opposite case where p1 = p2 = · · · = pn = 1 (i.e., all encountered prey are

exploited) and the forager must choose when to stop exploiting each prey. A central

result of the patch model is the marginal value theorem (MVT) [23, 24], which states

84

that nonzero exploitation times τ ∗1 , τ
∗
2 , . . . , τ

∗
n that make

g′i(τ
∗
i) =

−cs +
n∑

i=1

λigi(τ
∗
i)

1 +
n∑

i=1

λiτ ∗i

and g′′i (τ
∗
i) < 0 (3.2)

for each type i will correspond to an optimal patch foraging behavior. That is, behav-

iors that equate per-prey rate of gain with per-lifetime rate of gain will appropriately

balance present reward with future opportunity cost so as to be optimal over a life-

time.

3.2 OFT Criticism and Explicit Processing Costs

Nonacs [69] bases his criticisms on the observation that Equation (3.2) implies that

g′1(τ
∗
1) = g′2(τ

∗
2) = · · · = g′n(τ

∗). That is, if behaviors in nature could be described by

the MVT, then every per-type rate of average gain (i.e., “speed” of gain) should be

equal to some global giving-up density (GUD). In the studies that Nonacs reviews,

foragers stop exploiting different prey types at different speeds, which leads him to

the conclusion that the MVT does not hold in reality.

As discussed by Stephens and Krebs [112], the function gi is not meant to be a

gross observable reward to the forager. Instead, it models the energetic reward to the

forager minus the internal handling cost, which is usually not externally observable.

To make this distinction clearer, we explicitly introduce an average handling cost

ci(τi) for exploiting prey of type i for an average of τi time, and we let gi(τi) be the

corresponding average observable reward. Thus, the forager should maximize

−cs +
n∑

i=1

λipi (gi(τi)− ci(τi))

1 +
n∑

i=1

λipiτi

. (3.3)

85

In this framework, the MVT states that times τ ∗1 , . . . , τ
∗
n that make

g′i(τ
∗
i)− c′i(τ

∗
i) =

−cs +
n∑

i=1

λi (gi(τ
∗
i)− ci(τ

∗
i))

1 +
n∑

i=1

λiτ ∗i

and g′′i (τ
∗
i)− c′′i (τ

∗
i) < 0 (3.4)

will correspond to an optimal patch behavior. From Equation (3.4), it must be that

g′1(τ
∗
1) − c′1(τ

∗
1) = g′2(τ

∗
2) − c′2(τ

∗
2) = · · · = g′n(τ

∗
n) − c′n(τ

∗
2). The rare case when the

observable rewards are such that g′1(τ
∗
1) = g′2(τ

∗
2) = · · · = g′n(τ

∗
n) is when the internal

handling cost rates are also all equal, and so a global GUD is exceptional. Differences

in terminal handling densities across types reflect differences in the handling burden

of those types. For example, for types with the same reward–time curve and linear

handling cost functions (i.e., ci(τi) , ciτi for type i and constant ci > 0), smaller

marginal handling costs (i.e., c′i(τi) = ci for type i) should lead to longer optimal

exploitation times—foragers spend relatively less time in patches with steep handling-

cost functions.

3.3 Graphical Optimization and Long Residence Times

The intuitive graphical approach frequently used by Stephens and Krebs [112] for

analysis of the single-type case can be extended to our model, which makes all costs

explicit and uses multiple types. To do so, we define λ , λ1 + λ2 + · · ·+ λn to be the

average Poisson encounter rate for all prey types combined. Then 1/λ is the average

search time between encounters, and

g ,

n∑

i=1

λi

λ
pigi(τi), c ,

n∑

i=1

λi

λ
pici(τi), and τ ,

n∑

i=1

λi

λ
piτi

86

g − c

τ
τ∗

(g − c)∗

− 1

λ

R∗

−cs
cs

λ

Figure 3.1: Effect of searching on optimal patch residence times. As search cost cs or
average interarrival time 1/λ increases, the slope R∗ of the optimal ray will decrease,
and the optimal average exploitation time τ ∗ will increase.

are the average per-encounter handling gain, cost, and time. Equation (3.3) then

becomes

g − c− cs

λ
1
λ
+ τ

. (3.5)

Graphical optimization of Equation (3.5) is shown in Figure 3.1. Each point in the

shaded area corresponds to a particular choice of preferences, p1, p2, . . . , pn, and ex-

ploitation times, τ1, . . . , τn. The upper boundary of the shaded area is the optimal

frontier on which all optimal behaviors are found. Optimization consists of rotating

a ray originating from (−1/λ, cs/λ) counter-clockwise from a −90◦ angle to the least

upper bound of the angles less than 90◦ where the ray intersects the shaded region.

The slope of the optimal ray R∗ is the optimal value of Equation (3.5), and the cor-

responding values (g− c)∗ and τ ∗ are the optimal per-encounter average net handling

gain and exploitation time. Hence, this graphical interpretation of rate maximization

allows for predictions of how perturbing parameters of the model will impact the

average handling time τ . An increase in the average handling time may be due to an

increase in the optimal exploitation time for each patch (i.e., changes in τ ∗i for each

87

type i) or due to additional patch types being added to the optimal diet (i.e., changes

in p∗i for each type i) or a mixture of the two effects. This graphical approach does

not suggest how to predict each individual τ ∗i or p∗i ; it is only meant to investigate

how certain parameter perturbations will affect general foraging trends. Specific op-

timal diet content and patch exploitation times can be found using algorithms from

classical OFT [23, 24, 80, 112].

When Stephens and Krebs [112] consider graphical solutions to the single-type

case, they frequently discuss how changes in encounter rate λ1 lead to changes in

optimal behavior. For multiple types, the overall rate λ can be changed while holding

the density λi/λ constant for each type i. The graphical example in Figure 3.1

shows that the optimal average exploitation time τ ∗ will increase if either the overall

encounter rate λ decreases or the search cost rate cs increases. In both cases, to

maximize lifetime reward, the forager must increase present gains to compensate

for future search losses—the opportunity cost of more exploitation decreases when

search time or cost increase. Likewise, if the average per-encounter handling cost c

is increased, the g − c curve will be shifted down the vertical axis and the optimal

average exploitation time τ ∗ will increase. This prediction suggests an explanation

for the ostensibly anomalous observation by Nolet et al. [68] that tundra swans spend

more time feeding in areas of deep water where more energy is required to acquire

similar prey as in shallow water. The increased costs necessarily decrease the maximal

long-term rate of gain, which is the opportunity cost of increased exploitation, and so

patches are exploited longer. This effect is investigated in more detail in Section 3.4.

88

3.4 The Sunk-cost Effect

Graphical optimization of Equation (3.3) helps explain apparently irrational be-

haviors discussed in the fields of economics, psychology, and biology in terms of

lifetime gain maximization. In economics, the propensity to continue a costly task

after paying some initial cost is sometimes called an escalation commitment, escala-

tion behavior, or escalation error, but it is more commonly known as the sunk-cost

effect [56, 108]. This nomenclature is also used by psychologists [e.g., 10]. In fact,

psychologists Arkes and Ayton [11] note that the sunk-cost effect is equivalent to

the Concorde fallacy first described by biologists Dawkins and Carlisle [27]. Al-

though none of these terms are used, the same phenomena is also observed by Nolet

et al. [68]. In particular, tundra swans must expend more energy to “up-end” to feed

on deep-water tuber patches than they do to “head-dip” to feed on shallow-water

patches; however, contrary to the expectations of Nolet et al., the swans feed for a

longer time on each high-cost deep-water patch. In every context, the observation

of the sunk-cost effect is an enigma because intuition suggests that this behavior is

suboptimal. Here, we show how optimization of Equation (3.3) predicts the sunk-cost

effect for certain scenarios; a common element of every case is a large initial cost.

3.4.1 Initial Costs: Recognition, Acquisition, Reconnaissance

For simplicity, we make a graphical argument with the assumptions that n = 1,

cs = 0, and p1 = 1 (i.e., the patch case). We also revert to interpreting g1 as the

average net handling gain (i.e., the sum of an observable gain and an internal cost).

Under these assumptions,

g1(τ1)
1
λ1

+ τ1
(3.6)

89

is the objective function for optimization. Similar arguments can be made about the

general multivariate form in Equation (3.3).

Consider the case when gain function g1 is initially:

(i) negative (i.e., g1(0) < 0),

(ii) increasing (i.e., g′1(0) > 0), and

(iii) decelerating (i.e., g′′1(0) < 0).

Functions meeting items (ii) and (iii) are treated by Stephens and Krebs [112]. How-

ever, these functions are all initially zero. Here, we let the average handling gain g1(τ1)

be initially negative to reflect some initial cost. For example, rather than treating

recognition cost as a separate quantity [e.g., 112, pp. 79–81], we consider them to be

a characteristic of the gain returned to the forager from handling each item (e.g., an

initial energy expenditure required simply for access to or identification of a prey).

Alternatively, as in the case of the tundra swans observed by Nolet et al. [68], the

initial cost may model the extra energy required to acquire prey (e.g., by “up-ending”

instead of simply “head-dipping”). Furthermore, just as Olsson and Brown [73] show

how Bayesian foragers receive a relative “foraging benefit of information” for spending

extra time in a patch, the initial cost here may be viewed as an average penalty due

to uncertainty about the patch gain function.

The graphical optimization procedure for such a initially negative gain function

is shown in Figure 3.2. The same gain function is shown in Figures 3.2(a), 3.2(b),

and 3.2(c) except that initial recognition cost is low, moderate, and high, respectively.

When the initial cost increases from r0 to r1, the optimal exploitation time increases

from τ ∗10 to τ ∗11 . Even when the initial cost increases from r1 to r2 and makes the gain

90

g1(τ1)

τ1−r0− 1

λ1

R∗
0

τ∗10

(a) Function with low initial cost r0 > 0.

g1(τ1)

τ1−r0

−r1

− 1

λ1

R∗
1

τ∗
11

τ∗
10

(b) Function with high initial cost r1 > r0.

g1(τ1)

τ1

−r1

−r2

− 1

λ1
R∗

2

τ∗12τ∗11

(c) Function with very high initial cost r2 >
r1.

Figure 3.2: Different recognition costs r2 > r1 > r0 have different optimal exploitation
times τ ∗12 > τ ∗11 > τ10 and optimal rates R∗

2 < R∗
1 < R∗

0. For two equally shaped
gain functions, the one with the higher initial cost will also have the higher optimal
residence time.

91

function strictly negative, the exploitation time still increases from τ ∗11 to τ ∗12 . This

propensity to exploit items longer when the initial cost is increased is exactly the

sunk-cost effect [10, 11]. However, it also maximizes the long-term net rate of gain,

and so it is the rational behavior.

This result can be explained using an opportunity cost interpretation [51, 112]. The

optimal rate R∗ is an opportunity cost for spending additional time exploiting an item.

It represents the maximum expected gain possible per unit time, and so it is costly

to exploit items of a particular type for so long that the type’s rate of average gain

falls below R∗. When the initial cost of handling increases on all encounters, the total

gain decreases, and so the opportunity cost for additional exploitation decreases (e.g.,

R∗
1 < R∗

0). Thus, the marginal handling gain must decrease further in order for

marginal costs and marginal benefits to equalize. This effect manifests itself through

the increase in optimal exploitation time.

By increasing exploitation time when initial cost increases, the forager reduces

the amount of time it spends paying high costs. Leaving patches at an earlier time

is equivalent to volunteering for paying recognition costs more frequently. It is not

the increased initial cost on a single encounter that is important; it is the increased

initial cost on all encounters that causes the decrease in opportunity cost for additional

exploitation.

3.4.2 Human and Nonhuman Examples

Feeding Time Increases in Areas of High-Cost Prey: In a study by Nolet

et al. [68], the foraging behavior of tundra swans in shallow water is compared to

the behavior in deep water. The swans forage on belowground tubers, and thus the

92

swans need only to “head-dip” in shallow water whereas they need to “up-end” in

deep water to find and retrieve the tubers. The model that the authors use to explain

the tundra swan behavior predicts that there will be a decrease in feeding time in

areas where feeding has larger power requirements. However, in deep water where

the power requirements to up-end are apparently larger than the requirements to

head-dip, the observed tundra swans spent longer times feeding on tuber patches.

Although this result is a contradiction of the model used by Nolet et al., it follows

directly from the discussion in Section 3.4.1. In particular, let n ≥ 1 (i.e., multiple

tuber patch types are available) and p1 = · · · = pn = 1 (i.e., encounters are not

ignored). For each patch type i, the average net gain function gi is assumed to be

initially negative in order to model the energetic burden of acquiring the belowground

tubers. Hence, we use the classical marginal value theorem result in Equation (3.2)

applied to initially negative gain functions.

The curve in Figure 3.3(a) models the average value gi of a tuber patch of type i

after exploiting the patch for time τi. The average cost ci of a patch entry reduces

the maximum possible long-term rate of gain R∗ from all patches. The MVT predicts

that the optimal exploitation time τ ∗i occurs when g′i(τ
∗
i) = R∗, which is depicted in

Figure 3.3(b) for three different R∗ maximum rates corresponding to three different

ci entry costs. As the average entry cost of a patch type increases, the maximum rate

decreases, and so average exploitation time increases. When R∗ is very high either

due to low cost ci or high return rates from other patches, the optimal commitment

time drops to zero because the shallow value function is dominated by steep returns

from other options.

93

b b

gi(τi)

τi−cilow
−cimod

−cihigh

(a) Gain gi(τi) shifts following initial cost ci.

b b

g′i(τi)

τi

R∗ for truncation
(τ∗i = 0)

MVT: g′i(0) ≤ R∗

R∗ for low cost cilow

τ∗ilow

R∗ for moderate cost cimod

τ∗imod

R∗ for high cost cihigh

τ∗ihigh

MVT: g′i(τ
∗
i) = R∗

(b) Marginal rate of gain g′i(τi) is invariant of constant ci.

Figure 3.3: Optimal exploitation time for patch type i with acquisition cost ci. In-
creased costs lead to decreased overall return rate R∗, which leads to greater exploita-
tion time in each costly patch. That is, when most encountered patches are costly
to enter, exploitation time in each of these high-cost patches will be long in order to
reduce their frequency. However, when enough other low-cost patches are available
to raise the overall return rate sufficiently high, exploitation time to patches with
relatively shallow marginal returns may decrease to zero. That is, when there are
enough high-quality patches, time is better spent searching for them.

94

Human Preference for High Price: One recorded example of the sunk-cost effect

in humans comes from studying behavior at the cinema. In a controlled study, Arkes

and Blumer [10] charge movie patrons different prices for tickets to see a particular

movie. They show that the likelihood that people attend the movie is positively

correlated with the cost of the ticket, and they conclude that this behavior is an

irrational mistake. However, this result can also be predicted by the classical marginal

value theorem result in Equation (3.2) applied to initially negative gain functions1.

Again, consider the case where n ≥ 1 (i.e., multiple types are available) and p1 =

· · · = pn = 1 (i.e., encounters are not ignored). For each activity type i, let the gain

function gi(τi) be parameterized by commitment time τi that represents the average

time the individual is committed to participating in that type of activity. That is, if

the commitment time for a type of activity is low, there is a low probability that the

individual will complete the activity, and thus the average gain returned from this

type of activity will also be low. Likewise, if the commitment time for the activity is

high, it will likely be attended, and so the value returned will level off as it returns no

value after it is attended. Hence, the analysis summarized in Figure 3.3 also applies

here. As ticket price increases for this set of individuals who are forced to buy the

ticket, they become more strongly committed to attending the movie2.

This example matches classical economic intuition. As the price a consumer pays

increases, the overall purchasing frequency decreases. The longer commitment to a

higher-priced movie reflects reluctance to make more purchases. Over the long term,

1Here, to be consistent with Arkes and Blumer [10], we do not allow encounters to be ignored, and
so initial costs are forced and the pure patch model predicts the optimal behavior. The combined
prey–patch model better fits reality as ticket purchasing opportunities can be ignored.

2If the experimenters allowed for encounters to be ignored (i.e., if participants could choose to
not purchase a ticket), movies with zero commitment times would also have zero ticket sales.

95

this behavior maximizes the net value the consumer holds collectively in goods and

capital. Behaving in any other way would be reckless when viewed from a long-term

opportunity-cost perspective. In particular, exploitation times are longer in order

to accumulate more gain to justify returning to a search that will likely result in

finding more “prey” that force high initial costs. Thus, the sunk-cost effect may seem

nonsensical for any single purchase, but it is adaptive when considering an economic

or ecological system view.

3.4.3 Escalation Behavior

The propensity to continue a costly task ad infinitum is an extreme form of the

sunk-cost effect known as escalation behavior or escalation error [56, 108]. In fact, the

Concorde fallacy gets its name from the example given by Dawkins and Carlisle [27]

of continued government investment on a supersonic jet that has no promise of ever

returning a profit. Here, we show how escalation behavior can be an adaptive rate-

maximizing strategy under special circumstances. These examples presume that the

optimal long-term rate of gain R∗ is negative, and so they are a better fit for economic

examples where prolonged deficits are allowed. However, as several studies show

that foragers can dynamically adjust behavior to maximize the present estimate of

long-term rate of gain [38, 39, 105], these examples may also be consistent with

short-term trends in behavior when foragers are temporarily subjected to high-cost

environments. Additionally, this analysis may apply to similar mathematical models

of value maximization when behaviors must choose from a set of costly options.

For example, in spiders that choose to join existing webs or spin their own [54],

small spiders face potentially dangerous competition with large spiders in new webs

96











As initial slope increases. . .
τ∗1 → 0+
R∗ → λ1g

g1(τ1)

τ1

R∗

g

− 1

λ1

Initially infinite slope

Figure 3.4: Analysis of positive constant gain function. The gain function is the limit
of smooth asymptotic gain functions of increasing steepness. The limiting optimal
behavior is to leave the patch immediately. Staying longer returns no additional gain,
and leaving immediately decreases the time between subsequent high-quality patches.

but also face high costs in building new webs. Also, studies of women in abusive

relationships suggests their decisions to leave the relationship are affected by fear of

violence toward pets that remain [29]. In both of these cases, the optimal behavior

may be accompanied by costs that might seem prohibitive in isolation. As in Sec-

tion 3.4.1, we use the simplified optimization objective given by Equation (3.6).

In Figure 3.4, a positive constant gain function is shown as the limit of asymptotic

gain functions of increasing steepness. Because of the asymptotic upper limit, sharp

increases in gain correspond to sharp decreases in marginal returns. So the optimal

patch residence time decreases as steepness increases because marginal returns fall so

quickly. In the limiting case, when the gain function is constant, the optimal behavior

is to leave immediately because staying longer cannot result in any additional gain.

In particular, it is better to invest time searching for new patches that guarantee

an entry reward g at regular rate λ1 (i.e., long-term rate of gain λ1g) rather than

97

Always

Suboptimal









Positive slope

As slope decreases. . .

τ∗1 → ∞
R∗ → 0









Negative slope

As slope decreases. . .

τ∗1 → 0
R∗ → −λ1g

g1(τ1)

τ1

−g

− 1

λ1

(τ∗
1
, R∗) = (∞, 0)

Figure 3.5: Analysis of negative constant gain function. Escalation error can be
viewed as the limit of increasingly shallow gain functions that are initially negative.
Zero patch residence time is not restored until steepness is sufficiently negative. For
this class of functions, optimal points will never be found in the shaded region between
the horizontal axis and the constant gain function.

staying in any single patch that provides no additional gain (i.e., long-term rate of

gain g/∞ ≈ 0).

The opposite effect is demonstrated in Figure 3.5, which shows a negative gain

function as the limit of asymptotic gain functions of decreasing steepness. As the

steepness of each gain function is reduced, the optimal patch residence time increases

without bound. So the optimal behavior for a constant gain function that is negative

is to remain forever in each encountered patch. It is better to pay a single recognition

cost once and remain in the patch forever rather than paying the recognition cost

repeatedly at each new encounter.

As shown in the lower portion of Figure 3.5, even when the gain function is

initially decreasing and convex, the optimal behavior is not to immediately leave

the patch unless the initial slope is sufficiently negative. It is better for the forager

98

g1(τ1)

τ1
− 1

λ1

Rlocal

τ local1 = 0

T

τ∗
1
→ ∞

R∗ → 0

Figure 3.6: Initially negative concave gain function has latent escalation behavior that
dominates the early local maximum. Leaving the patch immediately returns a higher
long-term gain than staying a short time longer, but it returns a lower gain than
staying for any time greater than T . Hence, escalation behavior is optimal because
it prevents paying any future entry costs.

to pay additional costs within the patch rather than face the −λ1g lifetime rate of

gain associated with immediately leaving the patch. However, escalation behavior is

avoided in this case because the convex gain function eventually becomes too steep.

A different effect occurs for initially negative and initially steep concave functions like

the one shown in Figure 3.6. Here, immediate withdrawal from the patch is a locally

optimal behavior. That is, the objective function decreases as the exploitation time

is increased slightly. However, as exploitation time increases, the objective function

reaches its global minimum and then starts increasing. Moreover, there exists a

time T such that exploiting these patches for any time τ1 ≥ T will be favorable to

immediate withdrawal. Again, it is better to exploit patches with a shallow negative

gain longer than to search for more patches that have a steep gain.

In the supersonic jet construction example [27], the costly behavior may be adap-

tive because it prevents starting other costlier ventures. More generally, successful

politicians in power may induce endless and massive spending in one area for no other

reason than to avoid new spending in other areas. In a foraging context, a forager

99

that must pay a large energetic cost to enter a patch (e.g., due to high predation risk,

having to swim upstream, or high uncertainty about patch quality) may hesitate to

ever leave that patch if the habitat contains few other types of patches. Similarly,

social group members may resist the temptation to leave a low-quality group if join-

ing any other group is accompanied by costly antagonistic violence [e.g., 29, 54]. In

general, in a set of apparently bad choices, the choice that has the lowest eventual

marginal losses will minimize the very long-term losses.

3.5 Conclusions

Optimal foraging theory introduces quantitative analysis into the study of behav-

ior in a way that complements intuition. We have shown how explicitly modeling

foraging costs can improve the accuracy of rate-maximizing OFT methods and an-

swer the criticisms of Nonacs [69] that rate maximization too often underestimates

patch residence time. As verified by van Gils et al. [118], the Bayesian forager mod-

eled by Olsson and Holmgren [74] accurately predicts observed patch residence times.

This result is investigated by Olsson and Brown [73] who derive a “foraging benefit of

information” that is an additional reward that Bayesian foragers receive for staying

longer in patches to gather information. As these models investigate foraging be-

havior using numerical dynamic programming techniques, they lack the intuition of

classical OFT. However, if the discovery penalty of the information gathering process

is modeled as an initial in-patch cost, then relatively simple classical OFT methods

also predict longer exploitation times.

We also show how explicitly including large initial in-patch costs in classical OFT

methods explains why sunk-cost effects like those observed by Nolet et al. [68] are

100

rational rate-maximizing foraging behaviors. This result seems counter-intuitive, but

it follows from using a farsighted decision-making model based on comparing present

returns to the opportunity cost of not searching. When encounters with costly patches

are likely, it is better to spend more time in each patch in order to reduce the accumu-

lation rate of said costs. This interpretation may also explain human preference for

high price [e.g., 10] and the escalation of costly behaviors ad infinitum [e.g., 27, 29].

Sunk-cost behaviors are criticized because they are examples of making decisions

based on past investments; however, they should be better understood as decisions

that reduce the frequency of similar future investments.

101

Part II: Optimal Distributed Task

Processing

102

In the following two chapters, we depart from the case of a solitary task-processing

agent with a local optimization objective. Here, we discuss groups of distributed

agents. The communication between agents is limited, and their actions are largely

uncoordinated. However, the ensemble of their individual behaviors results in de-

sirable global properties. Hence, these intelligent algorithms allow development re-

sources to be focused on improving the task-processing capabilities as opposed to

mechanisms required for reliable coordination. Additionally, these distributed be-

haviors serve as prototypes for understanding emergent phenomena already observed

in nature. In both cases described here, behaviors of a group of distributed agents

converge upon an optimal resource allocation. The first case treats a narrow set of

problems that have separable configuration spaces and seek Nash optimal resource

allocations, and the second case treats a broad range of problems with polyhedral

configuration spaces where Pareto optimal resource allocations are desired.

In Chapter 4, we introduce a novel framework for the analysis and design of dis-

tributed agents that must complete externally generated tasks but also can volunteer

to process tasks encountered by other agents. Example applications include flexible

manufacturing systems and autonomous air vehicles. In both cases, agents have over-

lapping capabilities encounter, but each agent is responsible for a different incoming

flow of tasks (e.g., widget requests or pop-up targets). It is desirable that agents co-

operate to share task load, but relatively loaded agents should accept fewer tasks from

others and vice versa. A distributed asynchronous volunteering policy is presented

that dynamically adjusts task flow around the network of agents. It is shown that

even though agents independently adjust their tendency to volunteer to process tasks

from other agents, the set of all volunteering tendencies converges to the unique Nash

103

equilibrium of a cooperation game. An artificial cooperation trading economy ensures

that at the equilibrium, non-zero cooperation tendencies are possible and vary across

agents. In particular, an agent with relatively high task encounter rate not only pro-

vides more incentive for connected neighbors to cooperate with it but also has less

incentive to volunteer to cooperate with other agents. The framework is shown via

simulation to be applicable to autonomous air vehicles, and the mathematical results

of the chapter are also shown to be consistent with classic studies of cooperation from

science. This work was originally presented by Pavlic and Passino [85].

In Chapter 5, we investigate the general case of minimizing a cost function over a

set of non-separable constraints. Although the results we describe are generic primal

space numerical optimization methods amenable to parallelization, we focus on the

specific application of intelligent lighting. In particular, a system contains a set of

lighting agents and sensor agents. Each sensor is associated with a particular min-

imum illumination constraint; however, it is desirable that the system meets these

constraints using minimum total power across the lights. Sensors are unable to com-

municate directly with other sensors; however, the lights themselves can serve as a

shared memory bank that each sensor can use to infer the demands of the other

sensors. We show how the single-sensor version of this problem is isomorphic to the

ideal free distribution (IFD) model of social foraging (i.e., allocating a fixed number

of animals to food sources to meet a nutrient constraint). Furthermore, we show how

a generalization of the IFD matches the general lighting problem and use the IFD to

inspire a distributed behavior that converges to the optimal allocation. The salient

feature of these numerical solution methods is that they are allowed to temporarily

104

violate their constraints, and their small perturbations away from the feasible set pro-

vide information that allows them to return to the space at a less costly allocation.

Other example applications include optimal power dispatch (i.e., allocating power

from a set of distributed generators to supply an aggregate consumer demand). Ad-

ditionally, our characterization of optimal generalized IFD allocations may suggest

how eusocial insect societies that have several nutrient constraints may appear to

violate known rational allocation strategies but actually fit a generalized IFD.

105

Chapter 4: Cooperative Task Processing

We consider a network of autonomous agents for which some agents are responsible

for processing tasks from one or more external sources. When a task arrives at one of

these agents, the agent may advertise the task to other agents connected to it. If none

of the connected agents volunteer to process the task, it must be processed by the

advertising agent; otherwise, the task is processed by one of the volunteering agents.

Agents that volunteer for tasks may themselves be connected to incoming task flows

for which they can advertise task encounters. In general, an agent in the network

may advertise task encounters to others, volunteer to process advertised tasks from

others, or do both. Our challenge is to define a distributed asynchronous algorithm

for automatically tuning how often each agent volunteers to process advertised tasks

so that the set of volunteering tendencies across the network converges to a Nash

equilibrium. In the following, we review existing cooperative processing work and

discuss why those approaches are not adequate for solving the problem we formulate

here.

Grid computing [22] is one existing approach for achieving cooperative task pro-

cessing across a group of networked task-processing agents. System designers work

106

under the assumption of heterogeneous agents with conflicting priorities. They bor-

row from the economic theories of mechanism design [61, Chapter 23] and imple-

mentation theory [76, Chapter 10] to design mechanisms (e.g., brokering agents) and

protocols that either encourage resource sharing [5, 42, 106, 123] or discourage ex-

ploitation [75, 93] among groups of agents. The common element of these different

methods of distributed algorithmic mechanism design (DAMD) [30] is that the de-

signer has no direct control over individual agents; instead, they control the structure

of the interactions between given agents on a given network. Hence, DAMD is not

appropriate for the design of the task-processing networks themselves.

Methods exist for the design of networks of interconnected task-processing agents

that have desirable task flow characteristics. For example, a flexible manufacturing

system (FMS) includes several machines that switch their current processing to one

of several input task flows and then produce output task flows for other machines

in the system. Perkins and Kumar [86] show that distributed scheduling policies

exist that guarantee such systems will have finite upper bounds on all buffers of

tasks. Similarly, Cruz [26] shows how special network elements can be combined to

form queueing systems with output traffic flows that are guaranteed to have finite

burstiness constraints so long as the input flows also satisfy similar constraints. These

methods are not intended to describe how agents can dynamically adjust task flow to

exploit unused processing ability on idle connected agents.

Because an optimal task flow configuration may be unknown, inaccessible, or

changing over time, task-processing agents may need to use feedback to acquire and

107

stabilize the optimal task-handling behavior. For example, a set of autonomous air ve-

hicles (AAV) deployed for distributed search, surveillance, or task processing can coor-

dinate their actions in order to converge on a holistically optimal behavior [31, 32, 37].

However, the coordination required between agents can be prohibitive. Additionally,

the single optimality criteria being maximized ignores fatigue on individual agents.

For example, in a smart power grid [52], it may be desirable for distributed power

stations to share load; however, a single overloaded station should not result in a cas-

cade of self-sacrificing failures. Here, non-cooperative game theory is used to develop

totally asynchronous and distributed algorithms for task-processing agents that both

respect local processing priorities while also sharing the processing burden of highly

loaded neighbors.

Non-cooperative game theory has been traditionally used to design optimal con-

trol strategies [14]; however, it can also be used to design simple selfish strategies that

nonetheless assist neighbors. Several such techniques already exist for designing poli-

cies on nodes in ad hoc multi-hop communication networks [3, 4, 21]. In these cases,

nodes can forward packets from other nodes in order to reduce network congestion or

improve communication diversity, but nodes resist using all local resources for assist-

ing other nodes. A salient feature of these forwarding networks is that packets can be

duplicated or dropped at any time. Hence, these networks are ill-equipped to model

task-processing scenarios where tasks that enter the network must be assigned and

processed by exactly one agent. Instead, our approach passes volunteering requests

around a network and uses an economics-inspired task-processing network game to

determine how best to respond to these requests. The resulting volunteering policy

108

is sensitive to both local processing requests and the presence of other agents on the

network that can volunteer as well.

This chapter is organized as follows. In Section 4.1, the task-processing net-

work framework is defined and example task-processing networks are described. The

optimization game is presented in Section 4.2, and an asynchronous distributed com-

putation method that ensures convergence to the game’s Nash equilibrium is given

in Section 4.3. In Section 4.4, results from a simulated task-processing network of

autonomous air vehicles are presented, and conclusions and areas of future research

are discussed in Section 4.5.

4.1 Task-Processing Network

In the following, we use the real numbers R, the natural numbers N , {1, 2, . . . },

the whole numbers W , {0, 1, 2, . . . }, and derived symbols like the non-negative real

numbers R≥0. Take a finite but arbitrarily large set A ⊂ N of task-processing agents

and a set P ⊆ {(i, j) ∈ A2 : i 6= j} of directed arcs connecting distinct agents.

For each agent i ∈ A, Vi , {j ∈ A : (j, i) ∈ P} and Ci , {j ∈ A : (i, j) ∈ P}

are respectively the sets of conveyors and cooperators connected to agent i. Hence,

V , {j ∈ A : Cj 6= ∅} =
⋃

i∈A Vi and C , {i ∈ A : Vi 6= ∅} =
⋃

j∈A Cj are respectively

the sets of all conveyors and cooperators in the network. Assume that:

1. For all i ∈ A, there exists a finite and possibly empty set Yi ⊂ N of task types

such that for all k ∈ Yi, tasks of type k arrive at agent i from an external

source at average rate λk
i ∈ R>0. Each external source of tasks is assumed to

be independent of all other sources.

109

Input streams (k ∈ Yj ⊆ {1, 2, 3}):

Conveyors (j ∈ V = {1, 2}): V3 = {1} 1 V4 = {1, 2} 2 V5 = {2}

Cooperators (i ∈ C = {3, 4, 5}): 3 C1 = {3, 4} 4 C2 = {4, 5} 5

Y1 = {1, 2} Y2 = {1, 2, 3}
1 2 1 2 3

π1
1

π2
1

π1
2

π2
2

π3
2γ3 γ4 γ5

Rate λk
j λ1

1 λ2
1 λ1

2 λ2
2 λ3

2

Send request @ πk
j

Accept request @ γi

Task
arrivals

Nodes and
processing
requests

Figure 4.1: Simple flexible manufacturing system example.

2. If j ∈ V, then there exist k ∈ Yj with πk
j 6= 0 where πk

j ∈ [0, 1] represents the

probability that conveyor j advertises an incoming k-type task to its connected

cooperators Cj . If j ∈ V does not advertise a task to its connected cooperators,

the task will be processed by agent j.

3. If i ∈ C, then there is some γi ∈ [0, 1] that represents the probability that agent

i will volunteer for an advertised task from one of its connected conveyors Vi.

Any task arriving at conveyor j ∈ V that is advertised to cooperators Cj will

be processed with uniform probability by exactly one of the cooperators that

volunteer for it; if no cooperators volunteer for the task, then it is processed by

conveyor j.

The graph G , (A,P), rates, and probabilities defined above characterize a task-

processing network (TPN).

The simple TPN shown in Figure 4.1 represents a flexible manufacturing sys-

tem (FMS) similar to the systems described by Perkins and Kumar [86]. Tasks of

types 1, 2, and 3 arrive according to independent Poisson processes. Type-1 and

type-2 tasks arrive at agent 1, and all three types of tasks arrive at agent 2. For tasks

110

b

b

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

λ1
1

λ2
2 λ3

3

1

2 3

(a) AAV-patrolled territories.

b

b

1

2 3

π
j
j

γi

C = V = {1, 2, 3}

Ci = Vi = {1, 2, 3} − {i}

Yj = {j}

1

2 3

λ1
1

λ2
2 λ3

3

(b) AAV task-processing network.

Figure 4.2: A task-processing network formed by three autonomous air vehi-
cles (AAV). (a) AAV-patrolled territories (b) Corresponding task-processing network

of type k ∈ Y1 = {1, 2}, agent 1 advertises task arrivals to agents 3 and 4 with prob-

ability πk
1 . Likewise, agent 2 advertises arrivals of tasks of type k ∈ Y2 = {1, 2, 3} to

agents 4 and 5 with probability πk
2 . The system designer can choose different proba-

bilities for each task type based on the specialized abilities of each agent. Each agent

i ∈ {3, 4, 5} volunteers for an advertised task with probability γi independent of task

type. Hence, in this TPN, agents 1 and 2 are conveyors and agents 3, 4, and 5 are

cooperators.

In the FMS example, the set of conveyors and the set of cooperators are disjoint.

In a general TPN, an agent can be both a cooperator and a conveyor. For example, the

fully-connected TPN shown in Figure 4.2(b) models an autonomous air vehicle (AAV)

patrol scenario shown in Figure 4.2(a) that is similar to others in resource allocation

literature [31, 32, 37]. Each AAV i ∈ {1, 2, 3} continuously searches its territory

for tasks (e.g., targets) to process, and these tasks are generated (i.e., found) at

rate λi > 0. When a task is found, the AAV advertises the task to both of its

111

neighbors. If neither neighbor volunteers for processing, the AAV processes the task

itself. In this fully-connected topology, all agents are both cooperators and conveyors.

Although this network has several cycles, tasks do not move around the network —

if a volunteering cooperator is given a task for processing, it cannot generate a new

task-processing request for that task; it must process it itself.

Task-processing networks describe a broad range of applications. The AAV ex-

ample above can also serve as a model of a mobile software agent [57, 58, 60, 99, 126]

that patrols for tasks to process or any general group of networked processors [36].

Additionally, by converting encounter rates to energetic rates (i.e., power demand),

TPNs can model the behavior of smart power grids [52] made up of stations that re-

quest assistance from neighbors. That is, cooperator stations adjust additional supply

provided in response to demand requests from remote conveyor stations.

4.2 Cooperation Game Among Selfish Agents

In a task-processing network, the probability (i.e., cooperation willingness) γi ∈

[0, 1] that cooperator i ∈ C will volunteer for an advertised task from its connected

conveyors must be chosen. It is assumed that this choice must be done in a distributed

fashion and it is impractical for agents to coordinate in order to maximize some global

utility. So each agent independently chooses a cooperation policy that maximizes its

individual utility (i.e., agents are selfish). Hence, optimality is given in terms of the

Nash equilibrium [19, Section 3.5.1].

To inform each cooperator how to choose this policy, the network’s designer assigns

cost and rewards to agent operations in a common currency (e.g., proportional to

dollars of net profit) that is called points here. In particular,

112

• Agent i ∈ A receives (bki − cki) net points for processing a locally generated task

of type k ∈ Yi.

• Conveyor i ∈ V receives rki when a task of type k ∈ Yi from i is processed by a

Ci cooperator.

• If cooperator j ∈ Ci volunteers and is selected to process a task of type k ∈ Yi

from conveyor i ∈ V, then cooperator j pays cost ckij to process that task.

However, these costs and benefits alone do not provide cooperators with any incentive

to volunteer to process conveyor tasks, and so a payment mechanism is required. Con-

sider conveyor j ∈ V and task type k ∈ Yj. If one or more cooperators in Cj volunteer

frequently to process requests from agent j, the other cooperators in the set should

conserve resources by volunteering infrequently. To ensure this qualitative behavior,

each cooperator i ∈ Cj receives volunteering payment qkijp
k
j (Qj) from conveyor j ∈ Vi

where:

• Qj ,
∑

k∈Cj
γk is the total quantity of cooperation willingness available to con-

veyor j.

• pkj (Qj) is a decreasing payment function that represents the price that conveyor

j pays to its connected cooperators each time they volunteer for a task of type

k ∈ Yj.

• qkij ∈ R>0 is a value factor that scales payment pkj (Qj) from conveyor j into

the currency of cooperator i ∈ Cj (i.e., i perceives qkijp
k
j (Qj) value from the

contribution pkj (Qj) from j).

113

So if any cooperator i ∈ Cj increases its cooperation willingness γi, it increases how

often it receives payment pkj (Qj) while also decreasing the payment itself. For each

cooperator i ∈ Cj , these two pressures encourage cooperation willingness (i.e., γi > 0)

and resource conservation (i.e., γi < 1).

To maximize net points earned over a long run time, each agent chooses a policy

that maximizes its own expected rate of point accumulation. So for a given vector

~γ = [γc1, γc2, . . . , γc|C|]
⊤ ∈ [0, 1]|C| of cooperation policies (where unique ck ∈ C for

all k ∈ {1, 2, . . . , |C|}), the utility (i.e., long-term rate of point gain) returned to

cooperator i ∈ C is

Ui(~γ) ,

Conveyor part — constant with respect to γi
︷ ︸︸ ︷

bi +

(

1−
∏

j∈Ci

(1− γj)

)

︸ ︷︷ ︸

Pr(Volunteer from Ci|Advertisement from i)

ri −Qipi(Qi) (4.1a)

+ γi
∑

j∈Vi

(
pij(Qj)−

Pr(i awarded task from j|i volunteers)
︷ ︸︸ ︷

SOBP1(Cj − {i})cij
)

︸ ︷︷ ︸

Cooperator part — γi and Qj vary with γi

(4.1b)

where

bi ,
∑

k∈Yi

λk
i

(
bki − cki

)
, (4.1c)

ri ,
∑

k∈Yi

λk
i π

k
i

(
rki −

(
bki − cki

))
, (4.1d)

pi(Qi) ,
∑

k∈Yi

λk
i π

k
i p

k
i (Qi), (4.1e)

are the costs and benefits of local processing on i ∈ V, and

cij ,
∑

k∈Yj

λk
jπ

k
j c

k
ij , (4.1f)

pij(Qj) ,
∑

k∈Yj

λk
jπ

k
j q

k
ijp

k
j (Qj). (4.1g)

114

are the costs and benefits to i ∈ C for volunteering for tasks exported from j ∈ Vi.

The expression for SOBP is given in Definition 4.1.

Definition 4.1 (Sum of binomial products). Let I be a finite index set and Ω ,

{γi}i∈I be an indexed family where γi ∈ [0, 1] for each i ∈ I. For Γ ⊆ I and g ∈ N,

the sum of binomial products

SOBPg(Γ) ,

|Γ|
∑

ℓ=0

1

g + ℓ

∑

C⊆Γ
|C|=ℓ

((
∏

i∈C

γi

)(
∏

k∈Γ−C

(1− γk)

))

. (4.2)

For a cooperator i ∈ C, SOBP1(Cj − {i}) is the probability that cooperator i is

chosen to process an advertised task from conveyor j ∈ Vi when it is given that it

volunteers for the task. Hence, for j ∈ Vi, the impact of cost rate cij decreases as other

cooperators from Cj increase their own cooperation willingness because the probability

that agent i will be selected decreases. So for a conveyor j ∈ V, its connected

cooperators Cj form a Cournot oligopoly [67] (i.e., a set of independent agents that

provide a service for a demand-driven price) with a positive externality [13] (i.e., the

cost of processing decreases as more cooperators enter the market). The underbraced

cooperator part of Equation (4.1b) shows that cooperator i must set its cooperation

willingness γi (i.e., its quantity of supplied cooperation) based on the summed returns

from several such markets.

4.3 Distributed Computation of the Nash Equilibrium

Let n , |C|. Because there is no coordination between players, the n-dimensional

play space is the Cartesian product
∏

i∈C[0, 1] = [0, 1]n, and the collection of coopera-

tion policies across all cooperators is the vector ~γ , [γc1, γc2, . . . , γcn]
⊤ ∈ [0, 1]n (where

unique ck ∈ C for all k ∈ {1, 2, . . . , n}). For each i ∈ C, it is assumed that the utility

115

function Ui : [0, 1]
n 7→ R is twice-continuously differentiable, and so, by Weirstrass’

theorem, Ui is bounded above and below and achieves its extrema. Following Bert-

sekas and Tsitsiklis [19, Proposition 5.7 from Chapter 3], the Nash equilibria of the

cooperation game can be found by solving n separate one-dimensional variational in-

equality problems. In particular, ~γ∗ ∈ [0, 1]n is a Nash equilibria of the cooperation

game if and only if, for all i ∈ C,

(γi − γ∗
i)∇iUi(~γ

∗) ≤ 0 for all γi ∈ [0, 1] (4.3)

where the block gradient (i.e., the ith row of the gradient)

∇iUi(~γ) =
∑

j∈Vi

(

∂
∂γi

(γipij(Qj))

︷ ︸︸ ︷

pij(Qj) + γip
′
ij(Qj)− SOBP1(Cj − {i})cij

)

.

So in a local neighborhood of the Nash equilibrium γ∗ ∈ [0, 1]n, any unilateral per-

turbation of a coordinate of γ∗ will result in equal or reduced utility.

The existence of a solution to the n simultaneous nonlinear equations in Equa-

tion (4.3) is not guaranteed in general and may be difficult to find analytically. How-

ever, variational inequalities over product spaces are well suited for parallel and asyn-

chronous computation [19]. Under special conditions on each utility function, a unique

Nash equilibrium is guaranteed to exist, and each of its coordinates in Equation (4.3)

can be computed independently in the distributed and asynchronous fashion described

by Assumption 4.1.

Assumption 4.1 (Totally asynchronous distributed iteration). Take (c1, c2, . . . , cn) ,

C to represent the n distinct cooperators of C. Let T , W to be the indices of a

sequence of physical times, and let {~γ(t)}t∈T , {(γc1(t), γc2(t), . . . , γcn(t))} be a se-

quence of iterated calculations in the [0, 1]n play space. For each i ∈ C, subset T i ⊆ T

116

corresponds to the times when coordinate γi(t) is computed. Additionally, for each

i, j ∈ C and each t ∈ T , there is an index τ ij(t) ∈ T of the least-outdated version of

coordinate γj available for the computation of coordinate γi with transition mapping

Ti : [0, 1]n 7→ [0, 1] at time t such that 0 ≤ τ ij (t) ≤ t. That is, an outdated state

estimate

~γi(t) , (γi
c1(t), γ

i
c2(t), . . . , γ

i
cn(t)) , (γc1(τ

i
c1(t)), γc2(τ

i
c2(t)), . . . , γcn(τ

i
cn(t)))

is available for the computation γi(t + 1) = Ti(~γ
i(t)) for each t ∈ T and i ∈ C. It is

assumed that

1. Set T i is countably infinite (i.e., |T i| = |T | = |N|) for all i ∈ C.

2. If subsequence {tk} of T i is such that limk→∞ tk = ∞, then limk→∞ τ ij (k) =

∞ for all i, j ∈ {1, 2, . . . , n}. That is, lim inft→∞ τ ij (t) = ∞ for all i, j ∈

{1, 2, . . . , m}.

For all t ∈ T , sequence {~γ(t)} is generated by the totally asynchronous distributed

iteration (TADI)

γi(t+ 1) ,

{

Ti(~γ
i(t)), if t ∈ T i,

γi(t), if t /∈ T i
(4.4)

where ~γ(t) , (γc1(t), γc2(t), . . . , γcn(t)). For each i ∈ C, the transition mapping Ti :

[0, 1]n 7→ [0, 1] in Equation (4.4) is defined by

Ti(~γ) , min{1,max{0, γi + σi∇iUi(~γ)}}

where σi ∈ R>0 is a step-size parameter that scales movement along the utility gradient

∇iUi.

117

4.3.1 Conditions for Distributed Convergence

The TADI-generated {~γ(t)} sequence represents the collective motion of n self-

interested agents that each climb their respective utility gradient in order to max-

imize their expected rate of point return. That is, Equation (4.4) may be viewed

as a dynamical system model of coupled agents that each take independent actions.

In particular, it can be shown that there exists a constant SOBP > 0 such that

SOBP1(Γ) ≥ SOBP for all Γ ⊆ C. So, assuming that cij > 0 and payment pij ≡ 0 for

all i, j ∈ A, the response of the system reaches ~γ(T) = ~0 in some finite time T ∈ W.

That is, the intrinsic agent behavior is not to cooperate. For each i ∈ C, it is desirable

to find a control law, which is implemented through the choice of payment function, to

destabilize the no-cooperation equilibrium and provide feedback to stabilize the Nash

equilibrium. It will be shown that functions satisfying Definition 4.2 the necessary

characteristics.

Definition 4.2 (Stabilizing payment function). For k ∈ N, a stabilizing payment

function (SPF) p : [0, k] 7→ R is a twice-continuously-differentiable function such that:

1. It is strictly decreasing. In particular, p′(Q) , dp(Q)/dQ < 0 for all Q ∈ [0, k].

2. It is convex. In particular, p′′(Q) , d2p(Q)/d2Q ≥ 0 for all Q ∈ [0, k].

3. Its convexity is eventually dominated by its slope. In particular,

γp′′(Q) ≤ −p′(Q) for all Q ∈ [γ, k − (1− γ)] with γ ∈ [0, 1]. (4.5)

The set of SPFs is closed under conical combinations (i.e., it is a filled cone). So

for i ∈ C, if pij is an SPF for all j ∈ Vi, then the sum
∑

j∈Vi
pij(Qj) is itself an SPF.

118

Q

pℓ(Q)

m > 0

b

b

0

b

0 1 2 k

−m

(a) pℓ(Q) , b−mQ

Q

pe(Q)

τ > 1

b

b

0

A

0 1 2 k

−A
τ

(b) pe(Q) , A exp(−Q/τ)

Q

pp(Q)

p > 1

q0 > k + p− 1

b

b

0

A

0 1 2 k

−Ap
q0

(c) pp(Q) , A(1 −Q/q0)
p

Q

ph(Q)

κ > 0

ε > κ+ 1

b

b

0

A

0 1 2 k

−Aκ
εκ

(d) ph(Q) , Aεκ/(ε+Q)κ

Figure 4.3: Sample stabilizing payment (i.e., inverse demand) functions. (a) pℓ(Q) ,
b−mQ (b) pe(Q) , A exp(−Q/τ) (c) pp(Q) , A(1−Q/q0)

p (d) ph(Q) , Aεκ/(ε+Q)κ

Additionally, by the definition of pij(Qj) in Equation (4.1g), if pkj (Qj) is an SPF for

all j ∈ V and k ∈ Yj , then pij(Qj) will also be an SPF for all i ∈ C.

Proposition 4.1 (Sufficient conditions for stabilization). Take k ∈ N and function

p : [0, k] 7→ R. If 0 ≤ p′′(Q) < −p′(Q) for all Q ∈ [0, k], then p is a stabilizing

payment function.

Four example SPFs are shown in Figure 4.3. Each payment function meets the

conditions of Proposition 4.1; however, the weaker condition 3 of Definition 4.2 is met

for ε ≥ κ in (d). Additionally, the polynomial function in (c) is an extension of the

linear function in (a).

Convergence to the Nash equilibrium depends not only on the structure of the

payment functions but also on the structure of the TPN graph itself. Sufficient

convergence conditions for a TPN network and its payment functions are given in

Theorem 4.1, which uses Definition 4.3 to describe the topological constraints on the

TPN graph.

119

Definition 4.3 (k-conveyor). Conveyor i ∈ V is a k-conveyor if it has exactly k ∈ N

outgoing connections to cooperators (i.e., if k = |Ci|).

Theorem 4.1 (Convergence of cooperation). Assume that

1. For all i ∈ C and j ∈ Vi, pij is a stabilizing payment function.

2. For all j ∈ V, |Cj | ≤ 3 (i.e., no conveyor can have more than 3 outgoing links

to cooperators).

3. For i ∈ C and j ∈ Vi, if j is a 3-conveyor, then there must be some k ∈ Vi that

is a 2-conveyor.

Define T : [0, 1]n 7→ [0, 1]n by T (~γ) , (T1(~γ), T2(~γ), . . . , Tn(~γ)) where, for each i ∈ C,

Ti(~γ) , min{1,max{0, γi + σi∇iUi(~γ)}}, (4.6a)

where

1

σi

≥ 2|Vi|max
k∈Vi

|p′ik(0)| (4.6b)

for all ~γ ∈ [0, 1]n. If

min
j∈Vi

|p′ij (|Cj|) | >
(

|Vi| −
1

2

)

max
j∈Vi

|cij |, for all i ∈ C, (4.7)

then the TADI sequence {~γ(t)} generated with mapping T and the outdated estimate

sequence {~γi(t)} for all i ∈ C each converge to the unique Nash equilibrium of the

cooperation game.

120

Proof of Theorem 4.1. By assumption 1 (i.e., all payment functions are stabilizing),

for any ~γ ∈ [0, 1]n and i ∈ C,

∇2
iiUi(~γ) =

∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)

=
∑

j∈Vi

<0
︷ ︸︸ ︷

p′ij(Qj) +
∑

j∈Vi

(
≤0

︷ ︸︸ ︷

p′ij(Qj) + γip
′′
ij(Qj)

)
< 0,

and

∇2
iiUi(~γ) =

∑

j∈Vi

(
<0

︷ ︸︸ ︷

2p′ij(Qj) +

≥0
︷ ︸︸ ︷

γip
′′
ij(Qj)

)
≥ −2

∑

j∈Vi

|p′ij(Qj)|

≥ −2
∑

j∈Vi

max
k∈Vi

|p′ik(0)| = −2|Vi|max
k∈Vi

|p′ik(0)|

≥ −2|Vi|max
k∈Vi

|p′ik(0)|. (4.8)

So by the assumed limits on step size σi given in Equation (4.6b), 0 > ∇2
iiUi(~γ) ≥

−1/σi for all i ∈ C.

Next, we bound the cross terms ∇2
iℓUi of the utility Hessian. These bounds require

the introduction of SOMS in Definition 4.4, which represents the slope of the SOBP.

Moreover, Lemmas 4.1, 4.2, and 4.3 put bounds on SOMS and precisely relate it to

the SOBP.

Definition 4.4 (Sum of monomial sums). Let I be a finite index set and Ω , {γi}i∈I

be an indexed family where γi ∈ [0, 1] for each i ∈ I. For Γ ⊆ I and h ∈ N, the sum

of monomial sums

SOMSh(Γ) ,

|Γ|
∑

ℓ=0

(−1)ℓ
1

h+ ℓ

∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

. (4.9)

Lemma 4.1 (SOBP1 derivative). If Γ ⊆ I and k ∈ Γ, then ∂ SOBP1(Γ)/∂γk =

− SOMS2(Γ− {k}).

121

Lemma 4.2 (SOMS floor). For Γ ⊆ I and h ∈ N, SOMSh(Γ) ≥ (1/h)
∏|Γ|

k=1 k/(h+k).

Lemma 4.3 (SOMS ceiling). For Γ ⊆ I and h ∈ N, SOMSh(Γ) ≤ 1/h.

Take ~γ ∈ [0, 1]n and cooperator i ∈ C. For another cooperator ℓ ∈ C − {i},

if ℓ /∈ Cj (i.e., ℓ is not an outgoing cooperator for j), then ∂Qj/∂γℓ = 0 and

∂ SOBP1(Cj − {i})/∂γℓ = 0 where Qj ,
∑

k∈Cj
γk and SOBP is from Definition 4.1.

So by introducing SOMS from Lemma 4.1,

0 ≤
∑

ℓ∈C
ℓ 6=i

|∇2
iℓUi(~γ)|

=
∑

ℓ∈C
ℓ 6=i

∣
∣
∣
∣
∣
∣
∣
∣

∑

j∈Vi

[ℓ ∈ Cj]







p′ij(Qj) + γip
′′
ij(Qj)

+ SOMS2(Cj − {i, ℓ})
︸ ︷︷ ︸

∂/∂γℓ SOBP1(Cj−{i})

cij







∣
∣
∣
∣
∣
∣
∣
∣

where [·] is the Iverson bracket (i.e., [S] = 1 or [S] = 0 when statement S is true or

false). By Lemmas 4.2 and 4.3, 0 < SOMS2(Γ) ≤ 1/2 for all Γ ⊆ C. Hence,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(~γ)
∣
∣ ≤

∑

ℓ∈C
ℓ 6=i

∑

j∈Vi

[ℓ ∈ Cj]
(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

︸ ︷︷ ︸
≤0

∣
∣ +

1

2
|cij|

)

=
∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣ +

1

2
|cij|

)
∑

ℓ∈C
ℓ 6=i

[ℓ ∈ Cj]

=
∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣ +

1

2
|cij|

)

(|Cj | − 1) .

However, by assumption 2, each conveyor j ∈ V has no more than three outgoing

connections to cooperators (i.e., |Cj | ≤ 3). Additionally, by assumption 3, if j ∈ Vi

is a 3-conveyor (i.e., it has 3 outgoing cooperator connections), then there must be

some other conveyor m ∈ Vi − {j} that is a 2-conveyor. So letting m ∈ Vi be the

122

2-conveyor that is guaranteed to exist,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(~γ)
∣
∣ ≤

Doubled contribution to sum from
other cooperators connected to

assumed 3-conveyors in Vi − {m}
︷ ︸︸ ︷

2
∑

j∈Vi−{m}

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

︸ ︷︷ ︸
≤0

∣
∣ +

1

2
|cij |

)

+
∣
∣p′im(Qm) + γip

′′
im(Qm)

︸ ︷︷ ︸
≤0

∣
∣ +

1

2
|cim|

︸ ︷︷ ︸

Contribution to sum from
other cooperator of 2-conveyor m ∈ Vi

.

By Definition 4.2 of an SPF,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(~γ)
∣
∣ ≤ −

∑

j∈Vi−{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)

− (p′im(Qm) + γip
′′
im(Qm))

+

(

|
m∈Vi

︷ ︸︸ ︷

Vi − {m}|+ 1

2

)

max
j∈Vi

|cij|

= −
∑

j∈Vi−{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)

− (p′im(Qm) + γip
′′
im(Qm))

+

(

|Vi| −
1

2

)

max
j∈Vi

|cij|.

or, equivalently,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(~γ)
∣
∣ ≤ −

∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)

+ (2p′im(Qm) + γip
′′
im(Qm))

− (p′im(Qm) + γip
′′
im(Qm))

+

(

|Vi| −
1

2

)

max
j∈Vi

|cij|.

Thus

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(~γ)
∣
∣ ≤ −

∇2
iiUi(~γ)

︷ ︸︸ ︷
∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+

<0
︷ ︸︸ ︷

p′im(Qm) +

(

|Vi| −
1

2

)

max
j∈Vi

|cij|.

123

So

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(~γ)
∣
∣ ≤ −∇2

iiUi(~γ)−
(

min
j∈Vi

|p′ij(Qj)| −
(

|Vi| −
1

2

)

max
j∈Vi

|cij |
)

︸ ︷︷ ︸

> 0 by Equation (4.7)

where, by the assumption in Equation (4.7), the underbraced expression is strictly

positive. The desired result follows from this inequality and Equation (4.8). In par-

ticular, as shown by Bertsekas and Tsitsiklis [19, Propositions 1.1, 1.11, and 5.1 from

Chapter 3], T is a maximum-norm contraction mapping with unique fixed point ~γ∗

that is the Nash equilibrium of the cooperation game. Futhermore, the TADI sequence

{~γ(t)}t∈T generated by T converges to ~γ∗ [19, Proposition 2.1 from Chapter 6].

4.3.2 Interpretations

As shown in the proof of Theorem 4.1, every 3-conveyor contributes two payment

slope p′ij terms to ∇2
iℓUi that are canceled by the two slope terms in ∇2

iiUi. Hence,

when 3-conveyors are connected to a cooperator, the cooperator loses control of its

utility gradient along its cooperation coordinate unless there exists a 2-conveyor that

it can dominate. So 2-conveyors are themselves stabilizers that allow a cooperator

i ∈ C to focus its decision making on the conveyors in Vi for which there is only

one other cooperator competing for payment. For example, in the complex TPN in

Figure 4.4, the 3-conveyors in the network (e.g., 2, 4, 7, and 10) could destabilize the

gradient ascent if the 2-conveyors (e.g., 1, 5, 6, 8, 9, and 11) were not also present. It

may be possible to weaken Theorem 4.1 to allow for conveyors with n > 3 outgoing

connections to cooperators so long as the slopes of the n-conveyor payment functions

can be dominated by those of other 1-conveyors.

124

5

6

4

7

3

0

8 9

2

10

1

11

4

7

2

10

5

6

1

11

3

8 9

λ4
4

λ7
7

λ2
2

λ10
10

λ5
5

λ6
6

λ1
1

λ11
11

λ3
3

λ8
8 λ9

9

Figure 4.4: Many-agent task-processing network with stable topology.

The restriction in Equation (4.7) is similar to the network generalization of Hamil-

ton’s rule [43] discussed by Ohtsuki et al. [72] and Nowak [70]. In their case, the graph

consists of individuals at graph nodes that have relationships modeled by graph links.

Each individual is either a cooperator, which pays a cost to deliver a benefit to a neigh-

bor, or a defector, which pays no cost and delivers no benefit. Behavioral strategies

spread by way of birth–death processes, and they show that a sufficient condition

for cooperation to spread is that the benefit-to-cost ratio is greater than the average

degree (i.e., number of neighbors connected to each node) of the network. Here, the

task-processing network is not a substrate for birth–death processes; however, the rule

in Equation (4.7) plays a similar role relating payment, cost, and cooperator degree.

Moreover, it is a sufficient condition for individual gradient ascent to converge upon

a stable cooperation policy. Hence, just as Hamilton’s rule allows scientists to reason

about cooperation in natural networks, it also ensures that automata will find stable

cooperation strategies in artificial networks.

125

λ2 (encounters per second)

O
p
ti
m
al

co
op

er
at
io
n
w
il
li
n
gn

es
s

γ
∗ i
fo
r
i
∈
{1
,2
,3
}

A B C

0

1

0 1 2 3 4

λ1 = 0.6

λ1

λ3 = 1.7

λ3

b
a

b

b
b

c

γ
∗
1

γ
∗
3

γ ∗
2

A







λ2 < λ1 < λ3

γ∗2 > γ∗1 > γ∗3

B







λ1 < λ2 < λ3

γ∗1 > γ∗2 > γ∗3

C







λ1 < λ3 < λ2

γ∗1 > γ∗3 > γ∗2

Figure 4.5: AAV optimal cooperation willingness as encounter rates vary.

4.4 Simulation of Cooperative AAV Scenario

Consider the AAV scenario shown in Figure 4.2. Assume that πk
i = 1, cℓij = 0.1,

and qℓij = 1 for all i ∈ A, j ∈ A−{i}, k ∈ Yi, and ℓ ∈ Yj. Also assume that λ1
1 = 0.6,

λ3
3 = 1.7, 0 < λ2 ≤ 5, and the linear payment function pii(Qi) , 1−Qi/λ

i
i for all i ∈ A.

Hence, the three otherwise equivalent agents face different task encounter rates, and

their payment functions have slopes that are inversely proportional to each encounter

rate. So agents associated with higher encounter rates have a higher demand for

cooperation and thus have inelastic payment functions (i.e., cooperation retains its

high value even when a high quantity is available).

A conservative choice of step size σℓ , 1/(4maxi∈A,j∈Vi
p′ij([0, 0, 0]

⊤)) for all ℓ ∈ A

yields a convergent TADI for this scenario. Matlab simulation results summarized

in Figure 4.5 show how the resulting Nash equilibrium ~γ∗ depends upon the AAV

encounter rates. In particular, the Nash equilibrium has the desirable feature that

λi > λj implies that γ∗
i < γ∗

j for all i, j ∈ A. So agents that are locally busy are less

willing to cooperate, and agents that are relatively idle are more willing to cooperate.

126

In Figure 4.5, as λ2 increases, payment function p2 to agents 1 and 3 becomes shallower

and causes the optimal γ∗
1 and γ∗

3 to increase. However, as γ∗
1 (or γ∗

3) increases,

payment p3(Q3) (or p1(Q1)) to agent 2 is depressed and γ∗
2 decreases. Moreover, at

point b when the ascent of γ∗
1 truncates, the rate that γ∗

2 decreases shallows. At point

c when γ∗
3 also truncates, the γ∗

2 graph flattens entirely. Hence, to reduce the load on

the saturated cooperators, agent 2 reciprocates for their cooperation by not reducing

its own cooperation level to zero. So even though each agent’s own encounter rate has

no direct relationship to its TADI-directed movement, a desirable coupling between

encounter rates and optimal cooperation levels emerges from the cyclic relationships

on the network.

4.5 Conclusion

A framework for cooperative task processing on a network has been presented.

Using this framework, a particular totally asynchronous cooperative control policy

was shown to stabilize the Nash equilibrium of a cooperation game. By introducing

a cooperation-trading economy into the formulation, the agents individually climb

their own local utility functions yet still achieve an equilibrium where task process-

ing is shared among different agents. The present work adjusts each agent’s overall

cooperation willingness in order to maximize economic returns over a lifetime of task

encounters and processing requests. Future work should address the case where each

agent associates a different cooperation willingness with each of its connected convey-

ors. Likewise, forwarding probabilities could be considered to be decision variables

that should be adjusted across each agent’s connected cooperators. The present work

associates only one decision variable with each distributed agent, and so it makes the

127

simplifying assumption that those variables come from a Cartesian product space.

However, if future frameworks place multiple decision variables on a single distributed

agent, that assumption may be relaxed.

A weakness of the present work is that it implicitly assumes that agents either

have infinite processing capacity or that all tasks have negligible processing time.

Processing and switching durations are central motivations for the work of Perkins

and Kumar [86] just as finite capacity motivates the work of Cruz [26]. Effects like

these can be added to this model by explicitly modeling the average processing time

of each task. In particular, the present work optimizes the long-term rate of gain of

each agent based on rewards issued at the instant each task arrives, and this rate will

be depressed by the processing time of each task. Moreover, the time spent processing

a task represents a opportunity cost due to the lost time available for encountering

other tasks that return higher profit. Because each arrival is independent, the study

of average reward rates of Markov renewal–reward processes by Johns and Miller [55]

can be used to model the long-term rate of gain when considering task processing

times. Hence, the utility functions discussed in this work can be easily modified

to include these effects. If analytically tractable, optimal results can be found that

account for appreciable processing time.

128

Chapter 5: The MultiIFD as Distributed Gradient Descent

for Constrained Optimization

Distributed optimization methods are typically unconstrained or, as was the case

in Chapter 4, constrained within a configuration space that is a Cartesian product

of independent subspaces corresponding to each agent. Otherwise, each agent must

strongly coordinate its next action with its neighbors so as to prevent infeasible so-

lutions. Consequently, parallelization of optimization problems with inseparable con-

straints typically involves re-casting the problem in its dual space where the optimal

Lagrange multipliers can be solved for instead [19]. Because the multiplier associ-

ated with each constraint is independent of the other multipliers, the dual space is a

separable Cartesian product and thus amenable to parallelization. Unfortunately,

• Distributed dual-space solvers still must collectively elect particular agents to

operate on each coordinate of the dual space. This task is especially complicated

when the dual and primal spaces have different dimensions.

• Even though the dual space is separable, the optimization problem itself may

lack separability. In fact, the translation into the dual space can destroy primal

space functional separability (e.g., a diagonal quadratic cost function in the

primal space can translate into a quadratic cost function with cross coupling).

129

• After the optimal multipliers have been discovered, they must all be broadcast

to all agents so that the optimal primal-space solution can be found.

• During the calculation of the optimal multipliers for a set of system parame-

ters, those system parameters may change. If they change quickly, the relatively

long delay from one multiplier calculation to the next can lead to inappropriate

oscillations in the optimal solutions for the system. These jumps can be mit-

igated by generating intermediate solutions that incorporate the intermediate

multiplier estimates; however, ad hoc methods like these create difficulties in

quantifying the robustness of the system.

Consequently, despite the myriad methods of solving constrained optimization prob-

lems numerically, the inseparability of constraints presents many problems to dis-

tributed implementations.

Thus, in this concluding chapter, we describe a novel numerical approach to non-

linear optimization under constraints that is designed specifically for certain parallel

implementations. Ultimately, despite the optimization algorithm used, the presence

of inseparable constraints requires some coordination between agents. Here, the co-

ordination is implemented stigmergically. That is, agent actions leave a residue in

a shared location, and other agents respond appropriately to that residue. Coordi-

nation thus emerges from the agents even though they lack direct communication.

However, it is a necessary condition of this algorithm that system trajectories can

temporarily leave the constraint set. In principle, the distributed algorithm can be

adapted to so that the ultimate error bounds vanish; however, the non-equilibrium

behavior must be allowed to deviate from the feasible set. Examples of systems where

this behavior is acceptable include intelligent lighting, where illumination constraints

130

can temporarily be violated, and eusocial insect foraging, where nutrient surpluses

and deficits are temporarily acceptable.

This chapter is organized as follows. In Section 5.1, the most generic form of the

optimization problem is presented. The optimal solutions of the problem are charac-

terized using classical optimization theory, and example applications where the prob-

lem is relevant are described. Additionally, the conventional dual-space optimization

approach is summarized. In Section 5.2, we present our distributed primal-space al-

gorithm and the assumptions required for its convergence to the desired optimum

point. Finally, in Section 5.3, we present experimental results for verification.

Notation: We use conventional mathematical notation in our discussion. The nat-

ural numbers are denoted by N , {1, 2, . . .}, and the whole numbers are denoted by

W , {0, 1, 2, . . . , }. For function F : X 7→ R where X ⊆ R
n, at point ~x ∈ X , the

gradient ∇F (~x) , [∇1F (~x),∇2F (~x), . . . ,∇nF (~x)]⊤ , [∂F (~x)/∂x1, ∂F (~x)/∂x2, . . . ,

∂F (~x)/∂xn]
⊤. For a vector ~x, the norm ‖~x‖ , ‖~x‖2 ,

√
~x⊤~x. Other notation will be

defined as needed.

5.1 The Optimization Problem

The most basic version of the focal optimization problem consists of a cost func-

tional to minimize and a set of linear inequality constraints. In particular,

• Let n ∈ N be the dimension of the domain of the cost functional. For each

i ∈ {1, 2, . . . , n}, there exist constants xi, xi ∈ R≥0 such that xi ≥ xi ≥ 0.

Furthermore, the set X ,
∏n

i=1[xi, xi] (i.e., X is a Cartesian product of n

intervals of the real line). Then F : X 7→ R is the cost function to minimize.

131

• Let m ∈ N be the number of linear inequality constraints. That is, for each j ∈

{1, 2, . . . , m}, there is a minimum level cj ∈ R≥0 and a vector ~aj that is normal

to the hyperplanar boundary of the feasible set Cj , {~x ∈ X : ~a⊤j ~x ≥ cj}. That

is, ~aj represents the contribution of motion ~∆ ∈ R
n to reducing or increasing

the constraint deficit. It is assumed that there is some j ∈ {1, 2, . . . , n} such

that
∑n

i=1 aji ≥ 0. Collect each constraint normal vector into m ∈ n matrix

A , [~a1,~a2, . . . ,~a
n]⊤ and each minimum level into vector ~cj , [c1, c2, . . . , cm]

⊤.

The intersection of the feasible sets ∩m
j=1Cj = {~x ∈ X : A~x ≥ ~c} is a compact

convex polyhedron.

Thus, the non-linear optimization problem over linear constraints is to

minimize F (~x)

subject to A~x ≥ ~c.
(5.1)

The existence solutions to this problem requires additional constraints on the shape

of the cost function. These constraints will accumulated in the next sections as

necessary.

5.1.1 Characterization of Optimal Solutions

Let F be convex and continuously differentiable. An optimal solution to Equa-

tion (5.1) must exist; however, there may be several optima. Let ~x∗ ∈ X be an

optimal solution. By the Karush–Kuhn–Tucker (KKT) conditions [18], there must

exist a scalar Lagrange multiplier λ∗
j ∈ R≥0 for each constraint j ∈ {1, 2, . . . , m} and

scalar Lagrange multipliers µ∗
i , ν

∗
i ∈ R≥0 respectively for the lower and upper bounds

xi, xi for each i ∈ {1, 2, . . . , n} such that

∇F (~x∗) = λ∗
1~a1 + λ∗

2~a2 + · · ·+ λ∗
m~am

+ (µ∗
1 − ν∗

1)~e1 + (µ∗
2 − ν∗

2)~e2 + · · ·+ (µ∗
n − ν∗

n)~en

. (5.2)

132

where ~ei is an elementary vector for i ∈ {1, 2, . . . , n} with eii , 1 and eij = 0 for all

j ∈ {1, 2, . . . , n} − {i}. Thus, when ~x∗ is in the interior of X , the gradient ∇F (~x∗)

is a conical combination of the vectors normal to each active constraint. Moreover, if

the gradient is bounded away from this cone so that some directions are unsupported

by all constraints, the additional support will be provided by the upper and lower

bounds (i.e., the elementary vectors are normal to separable auxiliary constraints in

the system).

5.1.2 Example Applications

The non-linear optimization problem in Equation (5.1) can be shown to be a more

general case of existing problems in biology and engineering. We explore the animal

distribution problem at length first and then translate its conclusions by analogy

to a classical power problem and an intelligent lighting problem. In each case, a

finite resource is being optimally distributed across to a set of tasks (e.g., foragers

to food patches, power demand to generators, power supplied to lights). A central

contribution of this chapter is the generalization of the classical one-resource–one-

constraint allocation model to use several constraints for the one resource. However,

Moore et al. [66] extend he one-resource–one-constraint model to consider several

resources each with a single constraint. Thus, combining the two approaches to

support multiple resources that each have multiple constraints should represent a

broad variety of resource allocation problems.

Social Foraging: The Ideal Free Distribution

The ideal free distribution (IFD) of social foraging theory was originally introduced

by Fretwell and Lucas [34], and a review of recent biological advances in the theory

133

is given by Stephens et al. [115, Box 10.1 by Ian M. Hamilton]. Recently, engineering

extensions of IFD theory have been used to solve autonomous resource allocation

problems [e.g., 31, 66, 95, 96]. Here, we show that the IFD is a special case of Equa-

tion (5.1). Thus, the methods presented in this chapter can be used to find distributed

IFD solutions. Furthermore, the viewing Equation (5.1) as a general IFD suggests

other resource allocation problems.

In the basic IFD model, each of a group of N ∈ N foragers is free to move among

n food patches. Food arrives at each food patch at some rate, and then that food is

available to be distributed among the foragers within the patch. Thus, whenever a

new forager enters a patch, the per-unit-time food available to each of the previous

occupants of the group decreases. In the IFD model, it is assumed that each ideal

forager that is free to move among these n patches has perfect knowledge of function

ri : {0, 1, . . . , N} 7→ R that maps the number of foragers in patch i ∈ {1, 2, . . . , n} to

the rate of food available to each occupant of that patch. It is assumed that when

the rate in one patch is higher than the rate in another patch, some sufficiently small

number of animals immediately move from the higher-rate patch to the lower-rate

patch so that the imbalance between all rates decreases to its minimum. Consequently,

the patches with a relatively high food capacity will have a relatively high occupancy.

For analytical tractability, the integer programming problem of the IFD is ap-

proximated by the real optimization problem

minimize max{si(xi) : i ∈ {1, 2, . . . , n}}

subject to x1 + x2 + · · ·+ xn = N
(5.3)

where xi ∈ R≥0 and the suitability function si : [0, N] 7→ R is a continuous and

strictly monotonic real extension of the rate function ri for each i ∈ {1, 2, . . . , n}.

134

Patch occupants

S
u
it
ab

il
it
y
le
ve
l

x1, x2, x3

s1(x1), s2(x2), s3(x3)

s1
s2
s3

ℓ∗

x∗

3
x∗

1
x∗

2+ + = N

ℓ > ℓ∗

ℓ→
ℓ ∗

Figure 5.1: Graphical depiction of the IFD solution. For patches 1, 2, and 3, the
suitability functions s1, s2, and s3 are plotted on the same axes. A horizontal line is
plotted at a suitability level ℓ ≥ max{si(0) : i ∈ {1, 2, 3}} and lowered until it reaches
a level ℓ = ℓ∗ where x∗

1 + x∗
2 + x∗

3 , s−1
1 (ℓ∗) + s−2

2 (ℓ∗) + 0 = N where N is the total
population size. Then ~x∗ = [x∗

1, x
∗
2, x

∗
3]

⊤ represents the equilibrium IFD solution at
the equilibrium suitability level ℓ∗.

Consequently, the equilibrium distribution ~x∗ , [x1, x2, . . . , xn]
⊤ such that

{

x∗
i = 0 if si(0) < ℓ∗

si(x
∗
i) = ℓ∗ otherwise

(5.4)

where ℓ∗ ∈ R≥0 is a constant representing the equilibrium suitability for all occupied

patches. Because x1 + · · ·xn = N > 0, at least one patch must be occupied, and so

the equilibrium is well defined. Furthermore, because ℓ∗ ≥ 0, changing the equality

constraint that
∑n

i=1 xi = N in Equation (5.3) to the the inequality
∑n

i=1 xi ≤ N

has no impact on the solution. Moreover, the minimax problem is equivalent to the

maximin problem provided the inequality (or, equivalently, equality) constraint is

such that
∑n

i=1 xi ≥ N .

The solution to the IFD problem is often depicted graphically as in Figure 5.1.

In particular, the suitability functions are all plotted on the same axes. Initially, a

horizontal line at suitability level ℓ is drawn above the maximum suitability level. As

135

that line is decreased, it eventually intersects each suitability function i ∈ {1, 2, . . . , n}

at a level xi. The IFD distribution ~x∗ = [x1, x2, . . . , xn]
⊤ and suitability level ℓ∗ = ℓ

when x1 + x2 + · · ·+ xn = N .

Numerically, IFD solution methods search the positive real half-line for ℓ∗. For

each i ∈ {1, 2, . . . , n}, the restricted inverse s−1
i : [0, si(0)] 7→ [0, N] of the continuous

and strictly monotonic suitability function si exists. Thus, at each numerical iteration,

the suitability level candidate ℓ can be used to generate the corresponding candidate

occupation level xi = s−1
i (ℓ) for each i ∈ {1, 2, . . . , n} where si(0) > ℓ (xi = 0

otherwise). The suitability candidate ℓ converges on ℓ∗ as the x1 + · · ·xn converges

on N .

In principle, the numerical solution to Equation (5.3) can be reduced from a

search over the real half-line to a search over the N possible numbers of truncated

patches. Consider the case when the suitability functions are ranked and shaped so

that truncation of patch i ∈ {1, 2, . . . , n} implies truncation of patch j ∈ {i+1, . . . , n}

for all ~x ∈ [0, N]n. By the ordering,

• Patch 1 will always be occupied. If s1(N) < s2(0), then patch 2 cannot be

truncated, and so patch 2 must be occupied as well. Otherwise, x∗
1 = N and

x∗
i = 0 for all i ∈ {2, 3, . . . , n}.

• If only patch 1 and patch 2 are occupied, they are occupied at candidate levels

x+
1 , x

+
2 ∈ [0, N] where s1(x

+
1) = s2(x

+
2) such that x+

1 +x+
2 = N . Hence, candidate

equilibrium suitability level ℓ+ is such that s−1
1 (ℓ+) + s−1

2 (ℓ+) = N . In many

cases, this equation can be solved for ℓ+ analytically. If ℓ+ < s3(0), then this

process must continue for the candidate set of patches 1, 2, and 3. Otherwise,

ℓ∗ = ℓ+ and x∗
1 = s−1

1 (ℓ∗) and x∗
2 = s−1

2 (ℓ∗).

136

For example, if each patch i ∈ {1, 2, . . . , n} has a suitability function si(xi) = ai/xi

where ai ∈ R>0, then no patches will ever be truncated and x∗
i = Nai/(a1 + a2 +

· · · + an) where the equilibrium suitability ℓ∗ is the average (a1 + a2 + · · · + an)/N .

A precise O(N) algorithm for the case of generalized hyberbolic suitability functions

is presented by Quijano and Passino [95].

IFD as Area Maximization: The equilibrium solution of the IFD can be sum-

marized as

si(x
∗
i) = ℓ∗ − µ∗

i (5.5)

for all i ∈ {1, 2, . . . , n} where µ∗
i ∈ R≥0 such that µ∗

i = 0 if x∗
i = 0. That is, there exists

at least one occupied patch i so that 0 < si(x
∗
i) = ℓ∗ is the equilibrium suitability

level. A different patch j ∈ {1, 2, . . . , n} is either occupied at the same suitability level

(i.e., sj(x
∗
j) = ℓ∗) or truncated at a lower suitability level (i.e., sj(0) = ℓ∗ − µ∗

i ≤ ℓ∗).

The n equations of the form of Equation (5.5) can then be collected into

[s1(x
∗
1), s2(x

∗
2), . . . , sn(x

∗
n)]

⊤ = ℓ∗ − µ∗
1~e1 − µ∗

2~e2 − · · · − µ∗
n~en (5.6)

which is the KKT characterization of the optimal point ~x∗ to the problem

maximize

n∑

i=1

∫ xi

0

si(τ) dτ

subject to x1 + x2 + · · ·+ xn ≤ N.

(5.7)

Thus, the IFD that is traditionally viewed as a minimax problem over an equality

constraint may also be viewed as maximizing the total area underneath the suitability

curves subject to an inequality constraint that is always active. For example, a

eusocial insect colony may need to maximize its total foraging gain, but it can allocate

no more than N of its foragers. In the sequel, we revisit the definition of suitability

137

and show how a slightly different formulation suggests how to pick N for a given

environment.

IFD as Special Minimization Case: The IFD can be recast in terms of price

as opposed to suitability. That is, because suitabilities are effectively bounded away

from zero, patch i ∈ {1, 2, . . . , n} with the highest suitability si(xi) may also be

viewed as the patch with the lowest price pi : [0, N] 7→ R≥0 where pi(xi) , 1/si(xi).

Thus, as the quantity of food demanded increases due to an increase in the number of

foragers N , the equilibrium price λ∗ , 1/ℓ∗ increases. In particular, the equilibrium

solution of the IFD can then be summarized as

1

si(x
∗
i)

, pi(x
∗
i) = λ∗ + µ∗

i ,
1

ℓ∗
+ µ∗

i (5.8)

for all i ∈ {1, 2, . . . , n} where µ∗
i ∈ R≥0 such that µ∗

i = 0 if x∗
i = 0. This solution is

depicted in Figure 5.2 for the same case from Figure 5.1 (i.e., the hyperbolic suitability

functions are depicted as affine price functions). That is, there exists at least one

occupied patch i so that 0 < pi(x
∗
i) = λ∗ is the equilibrium price. A different patch

j ∈ {1, 2, . . . , n} is either occupied at the same price (i.e., pj(x
∗
j) = λ∗) or truncated

at a higher entry price (i.e., pj(0) = λ∗ + µ∗
i ≥ λ∗). The n equations of the form of

Equation (5.8) can then be collected into

[p1(x
∗
1), p2(x

∗
2), . . . , pn(x

∗
n)]

⊤ = λ∗ + µ∗
1~e1 + µ∗

2~e2 + · · ·+ µ∗
n~en (5.9)

which is the KKT characterization of the optimal point ~x∗ to the problem

minimize
n∑

i=1

∫ xi

0

pi(τ) dτ

subject to x1 + x2 + · · ·+ xn ≥ N.

(5.10)

138

Patch occupants

P
ri
ce

x1, x2, x3

p1(x1), p2(x2), p3(x3)

p1

p2

p3

λ∗

x∗

3
x∗

1
x∗

2+ + = N

λ < λ∗

λ → λ∗

Figure 5.2: Graphical depiction of price-minimizing IFD solution. For patches 1, 2,
and 3, the price (i.e., inverse suitability) functions p1, p2, and p3 are plotted on the
same axes. A horizontal line is plotted at a price λ ≤ min{pi(0) : i ∈ {1, 2, 3}} and
raised until it reaches a price λ = λ∗ where x∗

1 +x∗
2 +x∗

3 , p−1
1 (λ∗)+ p−2

2 (λ∗) + 0 = N
where N is the minimum population size. Then ~x∗ = [x∗

1, x
∗
2, x

∗
3]
⊤ represents the

equilibrium IFD solution at the equilibrium price λ∗. Although the axes have been
scaled, the solution here matches the one shown in Figure 5.1. In particular, the
hyperbolic suitability functions are represented by affine price functions here.

Thus, this inequality realization of the IFD minimizes the cost (i.e., total price)

required to satisfy a minimum N foragers. For example, given that the food require-

ments of N foragers will be serviced by n food patches, the N foragers will allocate

themselves to minimize the price of each unit of food (e.g., they shift out of patches in

order to minimize the time to wait to accumulate each unit of food). The inequality

constrained optimization problem in Equation (5.10) matches the focal minimization

problem of this chapter in Equation (5.1) with m = 1 and ~a1 = [1, 1, . . . , 1]⊤.

Incorporating a Single Nutrient Constraint: The use of price (i.e., inverse

suitability) functions to characterize food patches allows the IFD problem to be recast

as a cost minimization problem of the form of Equation (5.1). However, this general

structure also supports adding nutrient constraints to the IFD model. For example, a

139

eusocial insect colony may require a minimum level c1 of a particular nutrient that can

be found in one of the n food patches. Food patch i ∈ {1, 2, . . . , n} returns a1i ∈ R≥0

units of the nutrient per forager allocated to the patch. If it is beneficial to meet the

nutrient requirement with the fewest number of foragers, the nutrient-constrained

IFD is the solution to

minimize

n∑

i=1

xi

subject to a11x1 + a12x2 + · · ·+ a1nxn ≥ c1.

(5.11)

Thus, this IFD projects the [0, 0, . . . , 0]n origin onto the ~a⊤1 ~x ≥ c1 constraint space

according to the ‖ · ‖1 Manhattan distance. Because there is no upper bound on the

number of occupants in a single patch, the equilibrium strategy allocates all necessary

foragers to the food patch i ∈ {1, 2, . . . , n} with the highest return rate a1i. Assuming

that it is desirable to spread foragers across patches (e.g., to prevent a catastrophe

at one patch from killing a large group that is responsible for returning all of the

nutrient to the colony), then it may be desirable to

minimize

n∑

i=1

x2
i

subject to a11x1 + a12x2 + · · ·+ a1nxn ≥ c1,

(5.12)

which does not depend on the assumption of a fixed population size N . This opti-

mization problem uses the Euclidean distance ‖·‖2 to project the origin onto the con-

straint space. Consequently, the equilibrium distribution populates all patches with

foragers. Just as with Equation (5.11), the price functions are symmetric across the n

food patches; for each patch i ∈ {1, 2, . . . , n} of the Euclidean projection problem in

Equation (5.12), the price (i.e., inverse suitability) function pi(xi) = d(x2
i)/dxi = 2xi.

However, the asymmetric weighting of the constraint results in asymmetric occupancy

levels. Thus, there can be no equilibrium price or suitability level. Hence, because

140

costs are not equalized across patches, it appears like the solution to Equation (5.12)

cannot be an IFD. However, it is the case that the equilibrium solution ~x∗ will be

such that

2x∗
i

a1i
=

2x∗
j

a1j
(5.13)

for all i, j ∈ {1, 2, . . . , n}. Moreover, for each i ∈ {1, 2, . . . , n},

x∗
i = c1

a1i
a211 + a212 + · · ·+ a21n

.

Therefore, although prices (i.e., suitabilities) are not balanced, each weighted price

function in is balanced as in Equation (5.13) at a level λ∗ where

pi(x
∗
i)

a1i
= λ∗ =

2c1
a211 + a212 + · · ·+ a21n

where pi(xi) = 2xi for all i ∈ {1, 2, . . . , n}. Moreover, the solution to the nutrient-

constrained Euclidean IFD problem in Equation (5.12) matches the solution to the

classical IFD problem in Equation (5.7) with suitability and population defined as

si(xi) =
a1i
2xi

and N = x∗
1 + x∗

2 + · · ·+ x∗
n = c1

a11 + a12 + · · ·+ a1n
a211 + a212 + · · ·+ a21n

where these suitabilities are balanced at an equilibrium level ℓ∗ = 1/λ∗. That is, N is

the minimum number of foragers needed to meet the nutrient constraint at a uniform

suitability level. So the IFD generated from nutrient-constrained minimization not

only matches high occupation levels with high capacities, but it adjusts the required

population size N automatically with changes in environmental parameters. It is

unlikely that a eusocial insect colony always allocates a fixed number of workers to

foraging; hence, it is attractive that this generalization of the IFD predicts both

distribution and total population size. To test the predictions of this model, the

number of colony workers allocated to foraging could be measured as the quality of

patches is modulated.

141

Multiple Nutrient Constraints: In the preceding discussion, we showed how a

cost minimization problem under a single nutrient constraint can be translated into

an equivalent IFD problem where the minimum necessary population size is parame-

terized by the variables from the environment. Under a single nutrient constraint, a

quantity analogous to suitability is equalized across all food patches. However, as we

will now show, if multiple simultaneous nutrient constraints are added to processes

that would normally generate balanced IFD solutions, the equilibrium distribution

will not be balanced. Thus, it must remain in the framework of Equation (5.1).

Following the Euclidean projection example of Equation (5.12), let there bem ∈ N

nutrients where a eusocial insect colony must acquire at least cj ∈ R≥0 of nutrient j

across all n patches. Each food patch i ∈ {1, 2, . . . , n} is assumed to return aji ∈ R≥0

of nutrient j per each unit forager occupied in the patch. Thus, the colony must

allocate foragers to

minimize

n∑

i=1

x2
i

subject to a11x1 + a12x2 + · · · + a1nxn ≥ c1,

a21x1 + a22x2 + · · · + a2nxn ≥ c2,

...

am1x1 + am2x2 + · · · + amnxn ≥ cm,

(5.14)

which matches Equation (5.1) with F (~x) = ‖~x‖22 and ~aj = [aj1, aj2, . . . , ajn]
⊤ for each

j ∈ {1, 2, . . . , m}. Thus, the equilibrium solution ~x∗ is such that

2x∗
i = λ∗

1a1i + λ∗
2a2i + · · ·+ λ∗

mami + µ∗
i

where λ∗
j ∈ R≥0 and µ∗

i ∈ R≥0 for each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}.

Because each price function vanishes at the origin, there will be no truncated patches

142

and so µ∗
i ≡ 0. More importantly, because of the multiple constraints, there will be no

uniform equilibrium price (nor suitability) level across all n patches. If the coupling

between nutrient constraint vectors is weak (i.e., the patches that contribute much of

one constraint contribute very little of any other), then there will be price (i.e., inverse

suitability) shear between groups of patches; in particular, the patches most strongly

associated with each nutrient will come to a weighted price (and weighted suitability)

equilibrium for only that group. Assuming that eusocial insect colonies do have

multiple nutrient constraints that come from a single set of food patches, allocations

may appear to violate predictions of the IFD even though the foraging behaviors are

nonetheless consistent with minimum suitability maximization (i.e., maximum price

minimization). Combining these ideas with the several-population IFD approach (i.e.,

multiple resources that each have one constraint) of Moore et al. [66] and Quijano

and Passino [96] should lead to a very general model of animal foraging distributions

(and thus resource allocation in general).

Economic Power Dispatch

The basic economic dispatch problem in power engineering is summarized by

Bergen and Vittal [17]. There are n ∈ N generators that generate the PG ∈ R≥0

power demanded by a given community. At each generator i ∈ {1, 2, . . . , n}, the cost

Ci(Pi) of generating Pi ∈ R≥0 units of power is assumed to come from the convex

function Ci : R≥0 7→ R≥0. Thus, the optimal allocation ~P ∗ = [P1, P2, . . . , Pn]
⊤ is the

solution to the problem

minimize
n∑

i=1

Ci(Pi)

subject to P1 + P2 + · · ·Pn = PG.

(5.15)

143

However, this problem is identical to the price-IFD in Equation (5.10). In fact, Bergen

and Vittal provide explanatory figures similar to Figure 5.2 without any reference

to the IFD. Thus, the methods from this chapter are amenable to the distributed

solution of the economic power dispatch problem. Moreover, the multiple-constraint

foraging discussion motivates other economic power dispatch problems. For example,

consider m = 2 communities, and let community j ∈ {1, 2} demand PGi units of

power and receive aji fraction of its power from generator i ∈ {1, 2, . . . , n}. Due to

network effects (e.g., distance, connectivity), the vector ~a1 6= ~a2. Thus, the extension

of Equation (5.15) for this problem is to

minimize
n∑

i=1

Ci(Pi)

subject to a11P1 + a12P2+ · · · a1nPn ≥ PG1,

a21P1 + a22P2+ · · · a2nPn ≥ PG2,

(5.16)

where one or both constraints may be active. When both constraints are active,

the optimal solution is the point along the intersection of the two hyperplanes that

minimizes the cost function. The solution to this problem cannot be solved using

the IFD-like methods of Bergen and Vittal; however, it does have the form of Equa-

tion (5.1).

Intelligent Lighting

In the built environment, light is usually provided by several overhead artificial

sources as well as windows that provide variable levels of natural light. Intelligent

lighting systems have been proposed that use precise control of individual lights to

meet occupant preferences. Although some schemes are designed to control the color

of light [e.g., 12], most approaches are ostensibly for reducing the power used by

144

artificial sources [e.g., 40, 63, 77, 124]. However, few power-saving methods are

constructed within an optimization framework; instead, they save power solely by

eliminating preference surpluses (i.e., no optimization is done within the user pref-

erence hyperplane). Thus, recent intelligent lighting research focuses on measuring,

meeting, and maintaining user preferences [e.g., 40, 77]. Those that do include a

power or energy component into their algorithms are either ad hoc [63] or take the

optimization procedure for granted [124]. For example, Wen and Agogino [124] sug-

gest an allocation policy for n ∈ N lights above m ∈ N sensors that sets the light

output di ∈ [di, di] ⊆ R≥0 on each light i ∈ {1, 2, . . . , n} according to the solution

~d∗ = [d1, d2, . . . , dn]
⊤ of the problem

minimize ‖~d‖1

subject to L ~d = ~E.

(5.17)

where the matrix L ∈ R
m×n
≥0 represents the relative influence of each of the n lights on

the m sensors, and ~E ∈ R
m
≥0 represents the desired level on those sensors. However,

• No claims are made about the existence of a solution to the linear programming

problem. When a feasible solution is not available, their approach changes the

equality constraint to two inequality constraints that bound the sensor readings

within a tolerance region of ~E, and that tolerance region grows until feasi-

bility is returned to the system. However, it is nonsensical to formulate this

intelligent lighting optimization problem with an upper bound on the sensor

readings. If the goal is reduction of energy use and certain minimum lighting

constraints must be met, then some constraints must be allowed to deactivate.

Alternatively, hybrid actuators that can both provide light and remove it (e.g.,

by converting excess natural or artificial light into electricity) can in principle

145

maintain the equality constraints; however, these actuators are not part of this

formulation. Moreover, because the tolerance adjustment procedure is two sided

and symmetric, it can lead to large areas of darkness as some lights attempt to

compensate for the positive biases provided by natural light.

• The choice of the Manhattan distance ‖·‖1 as the objective function to minimize

is unjustified. As discussed in the foraging examples above, 1-norm minimiza-

tion leads to small clusters of high occupancy even though other allocations

exist that reduce power use and point-source effects. Additionally, as discussed

in Section 5.1.3, minimizing the Euclidean distance ‖ ·‖2 subject to the inequal-

ity constraint L~d ≥ ~E finds the least-squares fit ~d∗ to the system of equations

L~d = ~E. Hence, the need for a tolerance growth procedure is mitigated by

choosing minimizing the Euclidean norm (i.e., the instantaneous power) instead.

• A centralized lighting algorithm that distributes its answers periodically to slave

lights is used. Decentralized methods are proposed that duplicate the optimiza-

tion procedure on every node of the network and require cyclic computation. It

is suggested that the linear programming can be done collaboratively among the

actuators; however, no mechanisms for this distributed computation are given.

So intelligent lighting research is presently a vacuum for rigorous distributed optimiza-

tion results. Here, we formulate an intelligent lighting optimization problem similar

to Equation (5.17) of the form of Equation (5.1). Hence, the distributed optimization

methods presented in this chapter are amenable to intelligent lighting. Furthermore,

we use intelligent lighting as a motivating example in the description of the algorithm

behavior.

146

1 3 5 7

2 4 6 8

1 2

Figure 5.3: Top view of prototypical lighting system with n = 8 lights and m = 2
sensors. Lights, which are shown as circles around their identities, are mounted in the
ceiling of the room. Sensors, which are shown as patches underneath their identities,
are located at a distance beneath the lights. There are two disturbance sources (e.g.,
windows) shown as hatched rectangles.

Optimal Intelligent Lighting: Let there be n ∈ N lights positioned above m ∈ N

sensors. The lights and sensors can be in any position, but one possible configuration

is the room depicted in Figure 5.3. In general,

• Each light i ∈ {1, 2, . . . , n} is actuated by control xi ∈ [xi, xi] ⊆ R≥0 where

xi, xi ∈ R≥0 with xi ≥ xi ≥ 0.

• For each sensor j ∈ {1, 2, . . . , m}, if the control for light i ∈ {1, 2, . . . , n} in-

creases from xi to xi + δi with δi ∈ R>0 while all other lighting controls remain

constant, the reading of sensor j increases by ajiδi.

• Associated with each sensor j ∈ {1, 2, . . . , m} is a minimum sensor reading

γj ∈ R≥0 and a positive sensor bias bj ∈ R≥0 due to an exogenous light source

(e.g., the sun); it is taken for granted that bj is constant or changes at a slow

rate relative to the speed of the control system. Assuming that ~aj and the

147

present value of control variables ~x is available to sensor j ∈ {1, 2, . . . , m}, the

value of bias bj can be estimated by subtracting the expected sensor value from

the actual sensor value. Thus, the effective minimum constraint cj , γj − bj

must be supplied by the n lights for each sensor j ∈ {1, 2, . . . , m}.

So the intelligent lighting system must solve Equation (5.1) where A , [~a1,~a2, . . . ,

~am]
⊤ and cost function F is chosen by the system designer. This chapter considers

a general class of objective functions; however, a natural choice is to minimize the

instantaneous power F (~x) = ‖~x‖22. Mathematically, this choice projects the origin

(i.e., all lights off) onto the constraint set using the Euclidean distance. Moreover,

for each i ∈ {1, 2, . . . , n}, if xi represents a control voltage (e.g., the RMS voltage of

a dimmed AC power signal) across a linear lighting element, this policy will minimize

the power used by a group of identical lights. However, even if xi is a reference

variable for an inner-loop control system on the light (e.g., the input to a dimmable

fluorescent ballast or LED control system as opposed to the RMS voltage across an

incandescent light), minimization of ‖ · ‖22 will create diffuse pools of light that still

may likely use less power than single point sources.

5.1.3 Conventional Dual-Space Optimization Methods

The conventional method for parallelizing non-separable optimization problems is

to parallelize the dual optimization problem that may have greater separability [19].

We study this approach for Equation (5.1) here. For simplicity, the upper and lower

bounds on each ~x will not be treated explicitly here; however, matrix A and constraint

vector ~c can be augmented to include them. Although the minimization problem in

Equation (5.1) has a polyhedral constraint set with edges that are oblique in general,

148

the dual problem to

maximize inf
~x∈X

(F (~x) + ~λ⊤(~c− A~x))

subject to ~λ ≥ [0, 0, 0, . . . , 0]⊤
(5.18)

has a constraint set that is a Cartesian product of real half spaces. In principle,

each of the m separable half spaces can be assigned to a different distributed agent

for parallelized computation. However, the assignment of the m separable spaces to

the n agents may be non-trivial especially when m 6= n. Additionally, computations

in each space may still depend upon computations in another space. Parallelized

computations that must be completed sequentially do not capitalize on the benefits

of parallelization; in fact, due to the extra communication overhead, such problems

may be better solved on a single agent. Here, we consider how dual space optimization

methods may be used with the Euclidean distance ‖ · ‖2 and the Manhattan distance

‖ · ‖1.

Euclidean Minimization as Pseudoinverse Generator

Consider Equation (5.1) with the F (~x) = ‖~x‖22 = ~x⊤~x objective function. So the

primal problem is to
minimize ~x⊤~x

subject to A~x ≥ ~c.

The dual of this problem is to

maximize inf
~x∈X

(~x⊤~x+ ~λ⊤(~c− A~x))

subject to ~λ ≥ [0, 0, 0, . . . , 0]⊤
(5.19)

where Lagrange multiplier vector ~λ , [λ1, λ2, . . . , λm]
⊤ ∈ R

m
≥0. This problem is more

attractive for parallelization because its constraint space is separable. Moreover, for

this particular dual problem, for any multiplier ~λ, the quadratic argument of the

149

infimum has the unique minimum

~x∗ =
1

2
A⊤~λ

which corresponds to the KKT condition that the gradient 2~x is a conical combination

A⊤~λ of the vectors normal to each constraint space. Applying this minimum to Equa-

tion (5.19) yields

minimize
1

4
~λ⊤AA⊤~λ− ~c⊤~λ

subject to ~λ ≥ [0, 0, 0, . . . , 0]⊤

which itself is a quadratic program minimized over the positive orthant of the mul-

tiplier space. Distributed methods exist (e.g., projected gradient descent) for solving

this constrained problem, but their amenability for parallelization depends on the

structure of the A matrix [19]. For illustrative purposes, assume that λ∗
j > 0 for

each j ∈ {1, 2, . . . , m} (i.e., all constraints in the primal problem solution are active).

Then this quadratic problem has unconstrained minimum λ∗ = 2(AA⊤)−1~c. So

~x∗ =
1

2
A⊤~λ∗ =

Moore–Penrose
pseudoinverse of A
︷ ︸︸ ︷

A⊤(AA⊤)−1 ~c.

where the overbraced expression is the psuedoinverse of A. That is, ~x∗ is the least-

squares fit to the system of equations A~x = ~c. However, even if A has a sparse

separable structure, calculation of the pseudoinverse of A generally cannot leverage

the benefits of parallel computation.

Manhattan Minimization with Euclidean Proximate

Consider Equation (5.1) with the F (~x) = ‖~x‖1 =
∑n

i=1 ~x = ~1⊤~x objective function

where ~1 ,
∑n

i=1 ~ei = [1, 1, . . . , 1]⊤ ∈ {1}n. So the primal problem is to

minimize ~1⊤~x

subject to A~x ≥ ~c.

150

The dual of this problem is to

maximize inf
~x∈X

(~1⊤~x+ ~λ⊤(~c− A~x))

subject to ~λ ≥ [0, 0, 0, . . . , 0]⊤,

(5.20)

but this problem is considerably more difficult to solve due to the primal cost function

not being strictly convex. However, an iterative method can transform this problem

into a sequence of quadratic minimizations. In particular, if the primal problem is

re-cast as
minimize ~1⊤~x+ γ(~x− ~y)⊤(~x− ~y)

subject to A~x ≥ ~c

where γ ∈ R≥0 and ~y ∈ X is an estimate of optimal solution ~x∗, then the same

method that was used to find the optimal Euclidean projection can be used. After

each iteration, the estimate ~y is updated with the optimal result from the previous

iteration. This method converges on an optimal solution to the primal problem;

however, it is not any more parallelizable as the dual space method for the Euclidean

minimization.

5.2 Parallelizable Primal-Space Algorithm

The parallel solver of Equation (5.1) that we introduce here depends on a spe-

cial monotonicity present in the examples discussed in Section 5.1.2. In particu-

lar, along with the configuration space X =
∏n

i=1[xi, xi], also define origin space

X0 ,
∏n

i=1[0, xi] as the convex Cartesian extension of X to include the origin. The

function F is replaced with its continuous extension to this new space F : X0 7→ R.

151

Hence, Equation (5.1) is

minimize F (~x)

subject to A~x ≥ ~c

E ~x ≥ [x1, x2, . . . , xn]
⊤

(5.21)

where the elementary matrix E , [~e1, ~e2, . . . , ~en]
⊤.

It has already been assumed that F is convex and continuously differentiable.

Here, we also assume that each component of the gradient F is monotonically in-

creasing. That is, for each i ∈ {1, 2, . . . , n} and ~x, ~y ∈ X0,

xi ≥ yi ⇐⇒ ∇iF (~x) ≥ ∇iF (~y).

Consequently, ∇F (~x) ≥ ∇F (~0) for all ~x ∈ X where ~0 , [0, 0, 0, . . . , 0]⊤ is the origin.

Moreover, excluding the pathological case where F is constant, if ∇F (~x) = ~0, then

~x = ~0. Thus, optimization problem in Equation (5.21) is equivalent to projecting

the origin ~0 onto the constraint set X along the cost function F . The origin itself

can only be a solution to the optimization problem if all constraints are inactive (i.e.,

~c = ~0); otherwise, at least one constraint will be active.

5.2.1 Lighting Agents

Using the lighting discussion in Section 5.1.2 as a motivating example, we develop

the distributed optimization algorithm here in the context of intelligent lights. In

particular, let there be n ∈ N lighting agents and m ∈ N sensor agents that each

have access to the n lighting control variables (e.g., voltages) ~x , [x1, x2, . . . , xn]
⊤ ∈

X . There is also a sufficiently small parameter δ ∈ R>0 that is chosen such that

δ < cj/(~a
⊤
j
~1) for all j ∈ {1, 2, . . . , m}. This parameter will be used in the algorithms

152

defined below; roughly, it represents a trade between algorithm convergence speed

(i.e., high δ) and accuracy (i.e., low δ).

In principle, several different implementations of the discrete-time systems de-

scribed here are possible. The salient feature of this algorithm is that the actual

lighting levels are a shared memory of the system, and elements of that shared mem-

ory can be increased or decreased in very specific ways. Likewise, in the following

discussion, we assume that there are lighting agents that can only decrease the value

of a single light associated to them and sensor agents that can increase the value of

all lights. That is,

• Each lighting agent i ∈ {1, 2, . . . , n} has the ability to decrease the value of

component xi until that value is truncated at its lower bound xi.

• Each sensor agent j ∈ {1, 2, . . . , m} has the ability to increase the value of all

components of the vector ~x until they are each truncated at their upper bounds.

However, it is only the scheduling of the interaction with the shared memory that is

important. For example, other valid implementations may only use sensor agents to

broadcast sensor readings to lighting agents that perform both types of access.

Commissioning

In the discussion below, each sensor j ∈ {1, 2, . . . , m} is assumed to have access

to its constraint normal vector ~aj . For example, lighting agent i is implemented as

a part of the control mechanism for component xi, and that mechanism also services

requests from each sensor agent. During a pre-runtime discovery mode of influence

matrix A, each component xi is set at two non-zero test levels. If only one component

changes at a time and the identity of that light is broadcast instantaneously to all

153

sensors, then each sensor j ∈ {1, 2, . . . , m} can determine its influence vector ~aj using

the detected changes in its sensor readings.

Timing

Each agent is modeled by a discrete-time system acting at generally independent

time steps. That is, light agent i ∈ {1, 2, . . . , n} acts at the infinite set of times

T ℓi , {tℓi1 , tℓi2 , . . .} where tℓik ∈ R≥0 and tℓij > tℓik for all j, k ∈ N with j > k. Likewise,

sensor agent j ∈ {1, 2, . . . , m} acts at the infinite set of times T sj which is defined in

the analogous way. Let the set of times T , {t1, t2, . . .} =
⋃n

i=1 T ℓi ∪ ⋃m
j=1 T sj for

which the lighting variable ~x is updated by one or more agents. As with the individual

agent action times, if j < k and tj, tk ∈ T , then tj < tk. Thus, the ~x system evolves

as the discrete-time equation ~x[k + 1] = G(~x[k]) where the notation ~x[k] represents

the value of ~x at time tk ∈ T . Furthermore, the notation [k] alone represents the

time tk ∈ T corresponding to the kth update of the ~x vector. Whether each sensor

or lighting agent must know some or all of the components of the vector ~x at each

time [k] depends on the particular algorithm. However, each sensor j ∈ {1, 2, . . . , m}

can detect its accurate sensor reading ~a⊤j ~x[k] at each time [k].

In this chapter, we focus on two related timing schedules.

• We first consider the sequential case before generalizing to other timing sched-

ules. In the sequential case,

– For any i, n ∈ {1, 2, . . . , n} and j, o ∈ {1, 2, . . . , m}, the sets T ℓi, T ℓn, T sj,

and T so are all disjoint.

154

– If the action at time [k] is due to a given agent and there are m sensors

and n lights (i.e., m+ n total agents), the action at time [k +m+ n] will

also be due to that agent.

Consequently, the vector ~x is only modified by one agent at a time (i.e., there

are no simultaneous events), and the order of the n + m updates is fixed and

periodic. For example, this case follows from the assumption that there exists

a ∆t ∈ R>0 such that tℓik+1 = tℓik + ∆t and tsjk+1 = tsjk + ∆t for each lighting

agent i ∈ {1, 2, . . . , n} and each sensor j ∈ {1, 2, . . . , m}, and that the initial

action time of each agent is different.

• The sequentially simultaneous case is a modification to the sequential case to

allow simultaneous events. In the sequentially simultaneous case,

– For each time [k], Aℓ[k] is the set of all lighting agents that run simulta-

neously, and As[k] is the set of all sensor agents that run simultaneously.

– There exists M ∈ {1, 2, . . . , m+n} such that for any [k], Aℓ[k] = Aℓ[k+M]

and As[k] = As[k + M] and Aℓ[k] ∩ Aℓ[o] = As[k] ∩ As[o] = ∅ for any

o ∈ {1, 2, . . . ,M}.

Consequently, simultaneous events can occur at any time, but the ordering of

events is consistent. For example, this case follows from the assumption that

there exists a ∆t ∈ R>0 such that tℓik+1 = tℓik +∆t and tsjk+1 = tsjk + ∆t for each

lighting agent i ∈ {1, 2, . . . , n} and each sensor j ∈ {1, 2, . . . , m}, but that the

initial action time of each agent may be the same as a set of other agents.

155

5.2.2 Motivation: Optimization by Normal Support of Vari-

able Gravity

Before we introduce our focal distributed optimization algorithm, we discuss the

germ of a related gravitational gradient algorithm. We will use it as a foil to high-

light important features of our algorithm. In the sequential case of the gravitational

gradient algorithm,

• If lighting agent i ∈ {1, 2, . . . , n} acts at time [k + 1], then

~x[k + 1] = ~x[k]− di[k]∇iF (~x)~ei. (5.22)

This behavior requires that each lighting behavior have access to every com-

ponent of ~x at time [k]. However, if it is assumed that f ′
i(xi) , ∇iF (~x) only

depends on component xi for each i ∈ {1, 2, . . . , n}, then each lighting agent i

only needs access to component xi at time [k]. Unless otherwise noted, the

scalar di[k] ≡ δ.

• If sensor j ∈ {1, 2, . . . , m} acts at time [k + 1], then

~x[k + 1] = ~x[k] +

{

σj [k]~aj if ~a⊤j ~x[k] ≤ cj ,

0 otherwise.
(5.23)

where σj [k] > 0. For example, σj [k] , (cj −~a⊤j ~x[k])/‖~aj‖22 ensures that ~a⊤j ~x[k+

1] = cj.

This behavior mimics the behavior of a falling object in a gravitational field with force

proportional to the gradient ∇F . The gravitational energy (or height) of the object

is analogous to the value of the cost function. Hence, a uniform gravitational field is

analogous to a linear cost function. The constraint vectors are normal to planes in this

space. The KKT conditions of the system require that at equilibrium, the gradient

156

is a conical combination of the constraint vectors which is parameterized by the

corresponding Lagrange multipliers. Likewise, at static equilibrium when an object

is at rest, the gravitational force on it must be balanced by a positive combination of

the forces normal to its supporting surfaces. The distributed behavior above mimics

this idea by allowing the control vector ~x to descend along the gradient until being

supported in a direction normal to each active constraint.

5.2.3 The MultiIFD: Optimization Under Uniform Gravity

Here, we assume that there exists some bi ∈ R>0 such that ∇iF (~x) ≥ bi > 0 for

each i ∈ {1, 2, . . . , n} (e.g., this assumption is met if the lower bound xi > 0 for all

i ∈ {1, 2, . . . , n}). In the sequential case for this MultiIFD algorithm,

• If lighting agent i ∈ {1, 2, . . . , n} acts at time [k + 1], then

~x[k + 1] = ~x[k]− di[k]~ei (5.24)

where di[k] ≡ δ unless otherwise noted. Thus, the lighting agent may operate

without knowledge of the gradient or the states of the other lights.

• If sensor j ∈ {1, 2, . . . , m} acts at time [k + 1], then

~x[k + 1] = ~x[k] +

{

σj [k]~vj if ~a⊤j ~x[k] ≤ cj ,

0 otherwise
(5.25)

where direction

~vj[k] ,
[

aj1
∇1F (~x[k])

,
aj2

∇2F (~x[k])
, · · · ajn

∇nF (~x[k])

]⊤

(5.26)

and σj [k] > 0. For example, σj [k] , (cj−~a⊤j ~x[k])/(~a⊤j ~vj [k]) ensures that ~a⊤j ~x[k+

1] = cj.

157

For each j ∈ {1, 2, . . . , m}, the component vji represents the suitability of light i ∈

{1, 2, . . . , n} under the assumption that constraint j is the only active constraint.

That is, each sensor allocates its next lighting increase proportional to each suitability.

Thus, the collection of m parallel sensors is the collective action of multiple single-

constraint IFD solvers.

The MultiIFD algorithm can be derived from the gravitational gradient algorithm.

In particular, for dimension i ∈ {1, 2, . . . , n}, if xi motion in the gravitational gradi-

ent space is scaled by ∇iF (~x), then gravitational gradient motion is restored. Fur-

thermore, the MultiIFD algorithm transforms a non-linear optimization with linear

constraints into an equivalent linear optimization with non-linear constraints.

In both algorithms, the lighting constraints represent the boundary between a

decaying behavior driven by the lighting agents and a growth behavior driven by the

switched-mode sensor agents. A good algorithm design will have functions d[k] and

σ[k] that maintain a narrow boundary between these two regions where solutions

are guaranteed to be attracted to the optimal solution to Equation (5.1). Although

the existence of such convergent behaviors can be demonstrated in both algorithms,

control of non-equilibrium (i.e., speed) and equilibrium (i.e., ultimate error bounds)

characteristics is simpler to implement in the MultiIFD case. For example, the decay

rate in the gravitational gradient algorithm varies and is unknown by the sensors

without coordination or inference; consequently, choosing the sensor scalar σ[k] suffi-

ciently large to ensure both below-constraint growth and sufficiently small to ensure

small ultimate error bounds is nontrivial and may require ongoing coordination with

the lights. In contrast, the MultiIFD decay rate is a fixed aspect of the background

environment and is thus is more easily compensated for by the sensor responses. In

158

both cases, the sensors implicitly require information about system gradient. How-

ever, in the MultiIFD case, the lighting agents have a much simpler implementation.

Constraint-responsive behaviors: When components of ~x are sufficiently large

to deactivate all constraints and thus switch off all sensor responses, the decay rate

of each light can be increased to increase the sensitivity of the system. One such

mechanism increases di[k] on lighting agent i ∈ {1, 2, . . . , n} after several agent cycles.

When constraints are reached and sensors are switched back on, the di[k] will return

to its nominal values. Similarly, the sensor scalar σj [k] on sensor j can be adjusted

to slow movement toward constraints when sufficiently far from each constraint.

5.2.4 Stability of the MultiIFD

Here, we demonstrate that the MultiIFD algorithm forces trajectories of the sys-

tem to remain within the vertices of a hypercube that continually approaches an

enters a bounded region around the equilibrium ~x∗ of Equation (5.21). The theoreti-

cal work in this section focuses on the case when a single constraint is active; however,

the result can be extended to multiple constraints as shown in Section 5.3.

Unless otherwise noted, the following results use the sequentially simultaneous

timing schedule with period M . It is assumed that j ∈ {1, 2, . . . , m} is the single

active constraint. That is, either m = 1 or for every ℓ ∈ {1, 2, . . . , m}−{j}, ~a⊤ℓ ~x[k] ≥

cℓ; likewise, it is assumed that the trajectory is sufficiently far from component bounds

to cause truncation. The next cycle where the state ~x is updated by sensor agent j

is [k + 1]. Additionally, the MultiIFD scalar

σj [k] ,
cj − ~a⊤j ~x[k]

~a⊤j ~vj [k]
.

159

Fixed-hypercorner Characterization of Solutions

If ~x[k] is such that ~a⊤j ~x[k] > cj, then a no sensors will be active and the consistent

action of the light agents will eventually reduce sensor j to its constraint. Hence,

assume that ~x[k] be such that ~a⊤j ~x[k] ≤ cj . Then, at the event time [k + M] when

sensor j after all other agents have also executed,

~a⊤j ~x[k +M] = ~a⊤j

(

~x[k] +
cj − ~a⊤j ~x[k]

~a⊤j ~vj[k]
~vj[k]−~1δ

)

= ~a⊤j ~x[k] + ~a⊤j
cj − ~a⊤j ~x[k]

~a⊤j ~vj[k]
~vj [k]− ~a⊤j ~1δ

= cj − ~a⊤j ~1δ.

That is, the state ~x[k+M] will be an element of the hyperplane Pj , {~x ∈ X : ~a⊤j ~x =

cj −~a⊤j ~1δ}, which is parallel to the constraint boundary for sensor j. The system will

return to line every [k +NM] time where N ∈ N. Let q ∈ {1, 2, . . . ,M}. Then

x[k +M + q] = x[k +M] +
cj − ~a⊤j ~x[M]

~a⊤j ~vj[k]
~vj [k]− δ

∑

i∈A⊆{1,2,...,n}

~ei.

Thus, after the state enters the hyperplane Pj at time [k + M], its trajectories are

confined to the union of of hyperplanes

Cj{~x ∈ X : ~a⊤j ~x = cj − δ~a⊤j
∑

i∈A

~ei,A ⊆ {1, 2, . . . , n}}

that are traced by the vertices of the δ-hypercube that slides along the ~a⊤j ~x = cj con-

straint boundary. As Cj is a reduced-order surface on which trajectories are confined,

it is a sliding mode of the system [127].

Optimal Fixed Hypercorner: Assume that ~vj [k + M] ∝ ~1 and x[k +M] ∈ Pj .

Then

~x[k +M +M] = ~x[k +M] +
cj − ~x[k +M]

~a⊤j ~vj [k]
~vj [k]− δ~1

160

= ~x[k +M] +
δ~a⊤j ~1

~a⊤j ~vj [k]
~vj[k]− δ~1

= ~x[k +M] + δ~1− δ~1

= ~x[k +M]

Thus, any point ~x[k] ∈ Pj such that ~vj [k] ∝ ~1 is a fixed point of the algorithm when

only considering each M th step after reaching Pj . If ~x[k] is anchored to a particular

point in Pj , then the corresponding points of Cj are anchored as well. Thus, the

system rests at an oscillatory state within the vertices of a single hypercube in Cj .

However, if ~vj [k] ∝ ~1, then ~x[k] ∝ ∇F (~x[k]). Hence, the fixed point ~x[k] is an optimal

point for the equivalent problem with cj replaced with cj − δ~a⊤j ~1. Denote this fixed

point by ~x+ and let λ+
j such that ~x+ = λ+

j ∇F (~x+).

Ensuring Descent

As before, let ~x[k +M] ∈ Pj is in its sliding mode.

• Let i ∈ {1, 2, . . . , n} and assume that f ′
i(~x[k +M]) > f ′

i(~x
+) = λ+

j aji. By the

monotonicity of the gradient, xi[k+M] > x+
i , which implies that ~a⊤j ~x[k+M] >

~a⊤j x
+
i . However, this conclusion is a contradiction because ~x[k +M] ∈ Pj .

• Let i ∈ {1, 2, . . . , n} and assume that f ′
i(~x[k +M]) < f ′

i(~x
+) = λ+

j aji. By the

monotonicity of the gradient, xi[k+M] < x+
i , which implies that ~a⊤j ~x[k+M] <

~a⊤j x
+
i . However, this conclusion is a contradiction because ~x[k +M] ∈ Pj .

Therefore, there exist i, ℓ ∈ {1, 2, . . . , n} such that

vji[k +M] =
aji

f ′
i(~x[k +M])

>
1

λ+
j

>
ajℓ

f ′
ℓ(~x[k +M])

= vjℓ[k +M]. (5.27)

Let ~πj [k] , (~a⊤~1)/(~a⊤~vj[k])~vj [k]. Then

~x[k +M] = ~x[k] + δ
(

~πj [k]−~1
)

. (5.28)

161

Additionally,

~a⊤j ~πj [k] =
~a⊤~1

~a⊤~vj [k]
~vj [k] = ~a⊤j ~1. (5.29)

However, by Equation (5.27), there must exist i, ℓ ∈ {1, 2, . . . , n} such that πji[k] 6=

πjℓ[k]. Hence, by Equation (5.29), if i = argmaxo vjo[k] and ℓ = argmino vjo[k], then

πji[k] > 1 and πjℓ[k] < 1. Thus, by Equation (5.28),

max{xi[k + 2M]− x+
i : i ∈ {1, 2, . . . , n}} < max{xi[k +M]− x+

i : i ∈ {1, 2, . . . , n}}.

Moreover, because vji(~x) = aji/f
′
i(~x) is continuous for all i ∈ {1, 2, . . . , n}, there exists

some δ0 such that vji(~x[k+M]) > vjℓ(~x[k+M]) =⇒ vji(~x[k+2M]) > vjℓ(~x[k+2M])

for all δ with 0 < δ < δ0. Therefore, the MultiIFD converges asymptotically to the

fixed hypercube.

Ultimate Bounds

We have shown that gradient continuity and monotonicity allow the MultiIFD to

drive vertices of a hypercube to a fixed position anchored at a point ~x+ that is optimal

subject to the constraint that ~a⊤j ~x ≥ cj−δ~aTj ~1. However, additional information about

the convexity of the cost function is needed to represent the distance between ~x+ and

the desired optimal point ~x∗. For example, the gradient of the cost function F (~x) =

‖~x‖22 at both ~x∗ and ~x+ is proportional to both ~x∗, ~x+, and ~aj. Thus, the point ~x
+ that

anchors one corner of the cube is normal to the cj constraint hyperplane at ~x∗ while

the adjacent corner ~x+ + 1~δ falls on the hyperplane. Consequently, in experimental

simulation studies, after a critical threshold, each component of Euclidean minimizing

trajectories was always under the optimal solution component by no more than 2δ.

162

70.95 71 71.05 71.1 71.15
63.75

63.8

63.85

63.9

63.95

State trajectories, constraints, and helpful surfaces

x
1

x
2

Bounds

Trajectory

x
*

δ box

2δ box

Constraint A

Under constraint A

Constraint B

Under constraint B

Figure 5.4: The phase-plane trajectories of two lights in a two-sensor simulation.
The trajectory enters from the right where only constraint B is active. When the
trajectory enters the neighborhood of constraint A, it also becomes active and ceases
the motion of B so that the equilibrium solution falls with a 2δ-sized box of the
optimal solution, which is shown in the very center.

5.3 Results

Characteristics of the distributed lighting algorithm were investigated in simula-

tion as well as on a tabletop intelligent lighting testbed. A few of the results from

those investigations are included here.

5.3.1 Simulation Results

In the figure in Figure 5.4, a two-light–two-scenario scenario is shown. A more

general simulation with eight sensors and eight lights is shown in Figure 5.5. The

constraint trajectories approach their constraint surfaces and then remain on them.

While on the constraint surfaces, the light trajectories move to minimize cost.

163

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

20

40

60

80

100

120

Asynchronous event time [k]

S
e

n
s
o

r
re

a
d

in
g

s
 [

s
#

 (
V

)]
 a

n
d

 c
o

n
s
tr

a
in

ts
 [

c
#

 (
V

)]

Sensor trajectories and given constraints

s1/c1

s2/c2

s3/c3

s4/c4

s5/c5

s6/c6

s7/c7

s8/c8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

2

4

6

8

10

12

Asynchronous event time [k]

L
ig

h
t

o
u

tp
u
t

[l
#

 (
V

)]
 a

n
d

 o
p

ti
m

a
 [

o
#

 (
V

)] Light output trajectories (δ = 0.0500)

l1/o1

l2/o2

l3/o3

l4/o4

l5/o5

l6/o6

l7/o7

l8/o8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

−0.1

0

0.1

0.2

0.3

Asynchronous event time [k]

D
is

ta
n

c
e

 f
ro

m
 o

p
ti
m

u
m

Error (max−norm type: x[k]−x
*
) trajectories (estimated bounds: 0.0492)

Signed max

Signed min

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

100

150

200

250

300

350

400

Asynchronous event time [k]

C
o

s
t

Cost (power_used) trajectory for multiIFD algorithm (subopt: −1.1104 = −0.8204%)

Figure 5.5: Statistics from a lighting simulation with eight lights and eight sensors.
The optimal solution meets every constraint, but not all constraints are active. The
top of the graph shows the eight sensor trajectories as they approach their minimum
constraint levels. The second plot from the top shows the light trajectories as they
approach their optimal values. The third plot from the top shows the signed maximum
and signed minimum error. The maximum error converges to -0.0492, which is within
a δ bound of the optimal solution. The bottom plot shows the cost trajectory; it
continually decreases until reaching its minimum within less than 1%.

164

5.3.2 Experimental Results

Experimental validation of the MultiIFD algorithm for distributed lighting was

performed using the hardware-in-the-loop apparatus in Figure 5.6. Each algorithm

was tested on a single dSPACE RTI1104 DSP (i.e., distributed controls were simulated

on a single embedded controller). At the beginning of each run for sixteen seconds

(i.e., 2 seconds per light), lights and sensors automatically commissioned themselves

using a two-point linearization method. Otherwise, no information was provided to

the lights or sensors about relative location of other agents.

Results for a sample distributed power-minimization experiment with n = 8 and

m = 2 are shown in Figure 5.7. When the commissioning process ends, the controller

generates a high overshoot because of the combined action of both sensors that start

grossly under constraint. As discussed in Section 5.2.3, these effects can be mitigated

by causing the sensors to be less aggressive when under constraint and the lights

more aggressive after long lapses in sensor communication. So long as the behavior

matches the ideal behavior in the neighborhood of the constraint, the sliding mode

optimization continues. Results from a version of the algorithm with these overshoot

mechanisms installed is shown in Figure 5.8. For comparison, the results of a cen-

tralized dual space optimization procedure is shown in Figure 5.9. To reduce the

chattering in the dual space implementation, Lagrage multiplier estimates are used

between values produced from the minimization problem. The equilibrium results in

both of the distributed cases match the centralized case.

165

1

1

3

3

5

5

7

7

2

2

4

4

6

6

8

8

(a) Depiction

(b) User interface (c) Testbed electronics

(d) Testbed lights (e) Testbed sensors

Figure 5.6: Experimental lighting testbed with n = 8 lights and m = 8 sensors. (a)
Lights, which are shown as circles around their identities, are mounted in the ceiling
of the room and sensors. Sensors, which are shown as patches underneath their
identities, are located at a distance beneath the lights. There are two disturbance
sources (e.g., windows) shown as hatched rectangles. (b) The graphical user interface
designed in dSPACE ControlDesk, which shows an animation of real-time data. (c)
The control electronics being actuated by a dSPACE RTI1104 DSP programmed by
MATLAB. (d) The incandescent lights inside the testbed. (e) The cadmium sulfide
(CdS) photoresistor sensors inside the testbed.

166

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Time (s)

S
e
n
s
o
r

re
a
d
in

g
 (

V
)

Trajectory for Sensor 3 Reading

Sensor 3

Sensor 3 Constraint

(a) Sensor 3

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Time (s)

S
e
n
s
o
r

re
a
d
in

g
 (

V
)

Trajectory for Sensor 7 Reading

Sensor 7

Sensor 7 Constraint

(b) Sensor 7

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 1

(c) Output 1

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 2

(d) Output 2

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 3

(e) Output 3

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 4

(f) Output 4

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 5

(g) Output 5

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 6

(h) Output 6

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 7

(i) Output 7

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 8

(j) Output 8

Figure 5.7: Experimental results for distributed power minimization. In the first six-
teen seconds of the experiment, a two-point linearization procedure tests the influence
of each light on each sensor. Immediately after the procedure completes, the power
minimization algorithm starts. Large transients are observable at the beginning of
the experiment followed by smooth tracking of the illumination constraint. (a) Sensor
reading and constraint for sensor three. (b) Sensor reading and constraint for sensor
seven. (c) Output level for light 1 (d) Output level for light 2 (e) Output level for
light 3 (f) Output level for light 4 (g) Output level for light 5 (h) Output level for
light 6 (i) Output level for light 7 (j) Output level for light 8

167

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

Time (s)

S
e
n
s
o
r

re
a
d
in

g
 (

V
)

Trajectory for Sensor 3 Reading

Sensor 3

Sensor 3 Constraint

(a) Sensor 3

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

S
e
n
s
o
r

re
a
d
in

g
 (

V
)

Trajectory for Sensor 7 Reading

Sensor 7

Sensor 7 Constraint

(b) Sensor 7

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 1

(c) Output 1

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 2

(d) Output 2

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 3

(e) Output 3

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 4

(f) Output 4

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 5

(g) Output 5

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 6

(h) Output 6

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 7

(i) Output 7

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 8

(j) Output 8

Figure 5.8: Experimental results for distributed power minimization with overshoot
mitigation. In the first sixteen seconds of the experiment, a two-point linearization
procedure tests the influence of each light on each sensor. Immediately after the
procedure completes, the power minimization algorithm starts. To prevent large
transients, sensors are less aggressive when far under constraint and lights are more
aggressive. (a) Sensor reading and constraint for sensor three. (b) Sensor reading
and constraint for sensor seven. (c) Output level for light 1 (d) Output level for light
2 (e) Output level for light 3 (f) Output level for light 4 (g) Output level for light 5
(h) Output level for light 6 (i) Output level for light 7 (j) Output level for light 8

168

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

Time (s)

S
e
n
s
o
r

re
a
d
in

g
 (

V
)

Trajectory for Sensor 3 Reading

Sensor 3

Sensor 3 Constraint

(a) Sensor 3

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (s)

S
e
n
s
o
r

re
a
d
in

g
 (

V
)

Trajectory for Sensor 7 Reading

Sensor 7

Sensor 7 Constraint

(b) Sensor 7

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 1

(c) Output 1

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 2

(d) Output 2

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 3

(e) Output 3

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 4

(f) Output 4

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 5

(g) Output 5

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 6

(h) Output 6

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 7

(i) Output 7

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

O
u

tp
u

t
le

v
e

l
(V

)

Trajectory of output 8

(j) Output 8

Figure 5.9: Experimental results for centralized power minimization with chattering
mitigation. In the first sixteen seconds of the experiment, a two-point linearization
procedure tests the influence of each light on each sensor. Immediately after the
procedure completes, the centralized dual-space power minimization algorithm starts.
(a) Sensor reading and constraint for sensor three. (b) Sensor reading and constraint
for sensor seven. (c) Output level for light 1 (d) Output level for light 2 (e) Output
level for light 3 (f) Output level for light 4 (g) Output level for light 5 (h) Output
level for light 6 (i) Output level for light 7 (j) Output level for light 8

169

Part III: Summary and

Conclusions

170

The thread linking the collected work in this dissertation together is that biomimi-

cry should be expansive and not simply translational. Generalized models that have

specializations for both biological and engineering application accelerate research in

and collaboration between both areas. The hypothetical generalized mollusk [6, 102]

is an illustrative example. Mollusks vary greatly in physiological structure and be-

havior, and yet any two species from the mollusk phylum have a tremendous amount

in common. Consequently, mollusk research is necessarily varied but requires active

dissemination of information to other researchers in order to prevent duplication.

Facing this challenge, invertebrate researchers have created a fictitious generalized

mollusk that serves as substrate for understanding the similarities and differences

among members of the phylum. Despite the fact that the generalized mollusk is no

more real than a unicorn, it is one of the first animals studied in depth in undergrad-

uate invertebrate zoology courses and textbooks. The idea behind the work in this

dissertation is that biologists, anthropologists, sociologists, and engineers can bene-

fit from having their own generalized mollusk, a generalized optimal task-processing

agent. Here, in Chapter 6, we summarize contributions presented in this dissertation.

We outline future research directions in Chapter 7.

171

Chapter 6: Contributions

6.1 Generalized Solitary Optimal Task-Processing Agents

Existing work that applies solitary optimal foraging theory to artificial systems [7–

9, 32, 81, 97] has been successful insofar as it has filled a void. That is, both solitary

foragers [112] and autonomous vehicles [7, 9, 81, 97] encounter tasks to process (e.g.,

food items) according to some stochastic process. In environments where there is a

high rate of encounter with high-value tasks, fewer low-value tasks should be chosen

for processing because the high opportunity cost. However, when fewer high-value

tasks are available, all encountered tasks should be processed. Thus, the criteria for

accepting encountered tasks needs to be modulated in some intelligent way based on

environmental parameters. Foraging theory for engineering provides logical justifica-

tions for choices made when designing these criteria. However, those justifications

are based on assumptions grounded in natural systems. In particular, the optimal

forager makes decisions that maximize the stochastic limit of its energy intake rate,

an objective function that is likely a proximate of Darwinian fitness for a forager

with a long lifetime [23, 112]. However, an artificial task-processing agent will often

have a finite lifetime either due to fuel or other resource constraints. For example, an

autonomous air vehicle may have a relatively small number of packages to deliver to

172

targets in a mission that is time constrained by fuel load. Hence, autonomous agents

may behave similar to foragers (i.e., processing and ignoring randomly encountered

tasks), but their decisions should be shaped by optimization of application specific

utility functions and not necessarily by rate maximization.

In the work [84] reproduced in Chapter 1, we have identified the salient theoretical

features of optimal foraging theory and created a generalized solitary task-processing

agent. Like a natural forager, the agent must choose which tasks (e.g., food items)

to process and how long to process each task (e.g., when to leave a patch of food

items); however, the objective measure of optimality need not be driven by natu-

ral processes. So rather than maximizing the rate of energy gain, the generalized

solitary task-processing agent presented in this dissertation optimizes an abstract

advantage-to-disadvantage function that is a special composition of other parameter-

ized functions of the environment. The class of advantage-to-disadvantage functions

includes the long-term rate of gain used by behavioral ecologists, but it also includes

other rates of gain, efficiency measures, and objectives that incorporate a success

threshold below which a mission is considered a failure. We also develop three linear-

time algorithms for finding optimal behaviors for advantage-to-disadvantage functions

that meet the mathematical assumptions of each algorithm. The behaviors produced

by these algorithms have the same structure as the optimal behaviors familiar to

behavioral ecologists. In particular,

• Each of them ranks task types by a generalized profitability and chooses a

critical profitability that separates the task types into always-accept and always-

ignore groups.

173

• Each of them defines a generalized marginal value function that declines dur-

ing task processing until reaching a critical threshold that indicates the task-

processing agent should cease processing the task.

However, the critical switching thresholds vary with the choice of objective function.

So an autonomous agent already designed to have foraging-like preferences can be

easily modified to behave optimally with respect to different objective functions. For

demonstration, we simulated:

(i) an autonomous vehicle using a classical optimal foraging strategy

(ii) an autonomous vehicle using an objective function that includes a critical gain

threshold

(iii) an autonomous vehicle that indiscriminately processes all encountered tasks

For an infinite-time horizon, the vehicle in (i) that uses the classical objective max-

imizes gain under the assumption that future opportunities are certain. That is, it

forgoes some additional gain in the present in order to maximize its total number

of encounters. However, in the simulations we perform, each autonomous vehicle

mission is ended after a given finite number of tasks are completed (e.g., after all

packages have been delivered to targets). In this scenario, the vehicle in (ii) that

incorporates the success threshold outperforms both the rate-maximizing behavior

in (i) and the indiscriminate behavior in (iii). Thus, our generalized solitary task-

processing framework allows autonomous vehicle designers to customize the intuitive

structures of optimal foraging theory for their own applications.

174

6.2 Ecological Rationality

Biologists and anthropologists have limited ability to scientifically explain ob-

served irrational behavior because of the possibility that all exogenous effects have

not been controlled for [1, 2, 10, 11, 15, 20, 27, 41, 46, 56, 62, 68, 69, 73, 74, 98,

104, 107–110, 118]. Suboptimal foraging behavior may be due to unmodeled sexual

or predation-risk-mitigation benefits or developmental limitations or myriad other

factors outside of the foraging model. However, engineered agents have relatively

tight controls on variation and can be designed to follow behavioral rules to a fault.

When even these automata exhibit the same ostensibly irrational decision making

as observed in animals, there is reason to believe that the behavior may actually be

rational. Hence, the engineering design process is itself a scientific exploration of be-

havior and presents an opportunity for engineers to contribute to natural science. In

this dissertation, we review work [82, 83] that shows how two such irrational behav-

iors are consistent with predictions from optimality models when model assumptions

are violated or when the parameter space is sufficiently large. Both of these obser-

vations followed from the study of generalized task-processing agents in theory and

simulation, and thus a framework for understanding optimal task-processing agents

has value in both design and behavioral analysis.

175

6.2.1 Computationally Simple Implementations and Impul-

siveness

In operant binary-choice experiments in the laboratory, animal subjects are re-

peatedly given a choice between two food options in order to identify the animal’s pref-

erences. Prior to the experiment, the subjects are trained usually through starvation-

and-reward conditioning so that they are familiar with the operation of the exper-

imental apparatus (e.g., they recognize that pressing certain buttons is associated

with being given certain food items). In these experiments, when given a mutually

exclusive choice between two food items [e.g., 1, 15, 20, 41, 62, 98, 104, 107, 110],

animals will often prefer the items with the shortest processing time regardless of its

foraging gain. However, a rate-maximizing behavior would give preference to items

with the highest gain-to-time ratio regardless of the actual handling time. Moreover,

as reviewed by Giraldeau and Caraco [38, pp. 155–167], in experiments that do not

force animals to make binary-choice decisions, animals flexibly maximize their rate of

gain by dynamically adjusting their behavior in response to changes in the environ-

ment so that they maintain maximal long-term rate of gain. Furthermore, Stephens

and Anderson [110] and Stephens et al. [114] show that animals that are impulsive

in binary-choice schedules return to rate-maximizing preferences in sequential-choice

schedules (i.e., experiments where animals can ignore an item now to ensure that an

item of higher gain is encountered later).

In the work [82] reproduced in Chapter 2, we present a computationally simple

decision-making heuristic that converges to the maximal long-term rate of gain un-

der Poisson encounter assumptions (i.e., simultaneous encounters occurring with zero

probability). This heuristic can be used to implement optimal behaviors from the

176

generalized task-processing agent framework. However, we show that if the decision

rule is implemented on an agent facing repeated mutually exclusive binary-choice en-

counters, then a second asymptotic equilibrium is generated, and so the long-term

performance is a function of initial condition. If it is initialized with a high accu-

mulated gain, it behaves optimally as a rate-maximizing specialist. However, if it is

initialized with low gain, it converges upon a suboptimal generalist equilibrium. In

particular, the decision rule initially over generalizes and thus prevents its gain from

ever reaching a point where specialization is warranted. We suggest that if a similar

decision rule is used in animals, then the operant procedure of starving the animals

before the experiment may predispose them to suboptimal behavior. Moreover, an-

imals that have evolved in environments where prey is stationary (e.g., herbivores)

will have not been tuned by natural selection for mutually exclusive prey choice.

The decision-making heuristic we present in Chapter 2 need not only apply to rate

maximization. As we discuss, models of foraging under digestive-rate constraints [47]

result in foraging preferences notably different from the unconstrained preferences.

In particular, animals that have a material-processing-rate limit still have preferences

ordered by a form of profitability, but their partitioning task type is associated with

a partial preference. For example, a shorebird that forages for mollusks with a high

bulk-to-food ratio will process all high-calorie mollusks and ignore all low-calorie mol-

lusks, but a subunity fraction of intermediate mollusks will be processed [118, 119].

These partial preferences are only predicted by rate-maximization theory when addi-

tional bulk constraints are added. We show that our decision-making heuristic also

predicts partial preferences for an intermediate task type when its profitability is

changed to include a temporal effect of bulk processing. Additionally, this approach

177

is consistent with new optimality models of digestive-rate-constrained foragers [125].

Hence, the work reproduced in this dissertation not only provides simple implemen-

tation tools for task-processing agent design, but it suggests reasons for observed

irrational decision-making in animals.

6.2.2 Over-processing of Tasks

As reviewed by Nonacs [69], the predictions about optimal task-processing length

from classical foraging theory tend to be short compared to observations of the behav-

ior of certain classes of animals. Thus, Nonacs argues that optimal foraging theory is

incomplete. Moreover, anthropologists and economists [10, 11, 56, 108] have shown

that human tendency to continue a task is positively correlated with that task’s cost,

which is an ostensibly irrational sunk-cost effect. Recently, animals [68] have been

shown to exhibit the same cost-sensitive effect. In the work [83] reproduced in Chap-

ter 3, we show how augmenting classical optimal foraging theory to better model

foraging costs not only predicts the extension of task-processing length, but it shows

how increased task-processing length will be correlated with increased environmental

costs.

In classical optimal foraging theory [112], the gain returned from a patch of food

is assumed to be non-negative and decelerating. Thus, the per-patch instantaneous

rate of gain is an initially positive decreasing function of marginal returns. When the

marginal returns reach the long-term average rate of gain of the environment, the for-

ager leaves the patch. If the time between encounters increases or the maximum gain

of each encounter decreases, the long-term average rate of gain for the environment

178

will also decrease, and thus the animal will spend more time in each patch. Conse-

quently, as we show in Chapter 3, if patch gain is allowed to be initially negative (e.g.,

due to recognition costs or initial energetic expenditure needed to enter the patch),

the maximum patch gain will be decreased, and so longer processing times are ex-

pected. This prediction fits the study of tundra swans by Nolet et al. [68] particularly

well. Each swan forages on tubers buried in soil that varying depths throughout a

lake. Each tuber has the same nutritional value regardless of its position, but tubers

buried in deep water require a swan to completely tip its body in order to reach it

as opposed to only lowering its neck. Nolet et al. observe that when swans move

into deep areas to forage, the time spent in the energetically unfavorable up-ended

position is actually increased. The rate-maximizing explanation for this behavior is

that the swans are spending more time achieving positive foraging gains underwater

to reduce the encounter rate with each costly tuber patch. Thus, by expanding the

parameter space traditionally used in optimal foraging theory, predictions from our

generalized task-processing agent framework better match observations in nature.

6.3 Nash Optimal Cooperative Task-Processing

In the work [85] reproduced in Chapter 4, optimal task-processing on a network

is considered. Design and analysis methods exist for networks of autonomous task-

processing agents [26, 86], but these methods focus on maintaining bounded queue

lengths in the system and not on adjusting task flow to optimally allocate incom-

ing tasks to available agents. Grid computing [22, 30] proposes allocation meth-

ods for maintaining optimal resource allocation in a network of autonomous agents,

but the approach focuses on the design of protocols for a network of third-party

179

agents. Optimal message passing algorithms exist for ad hoc multi-hop communi-

cation networks [3, 4, 21], but these algorithms are inappropriate for application to

task-processing networks where tasks cannot be duplicated nor dropped. The optimal

group task-processing algorithms that do exist [31, 32, 37] require frequent communi-

cation and coordination among agents, which may be prohibitive for some scenarios.

Thus, the work discussed in the dissertation focuses on the design of decentralized dis-

tributed task-processing agents that achieve desirable system characteristics without

much explicit coordination between agents.

In the approach presented in this dissertation, each task-processing agent is re-

sponsible for a set of locally encountered tasks. The agent accumulates some value

for each locally encountered task that is processed, but it can forgo paying the cost

of processing the task (e.g., a cost proportional to fuel use) if another agent agrees

to process it instead. Likewise, the agent can process tasks encountered at remote

agents, but it must also pay the processing cost of that task. In order for agents to

make their decisions totally asynchronously, the constraints on their decision variables

(i.e., whether to volunteer to process remotely encountered tasks) must be separable,

and thus a Nash equilibrium approach is used. The Nash equilibrium behavior of the

natural system is to never volunteer for remotely generated tasks, and so a fictitious

trading economy is introduced. In this economy, agents that volunteer for remote

tasks are paid a price that decreases with the number of volunteers for the remote

tasks. Consequently, at low volunteering levels, there is incentive for each agent to

volunteer more, and at high volunteering levels, there is incentive for each agent to

volunteer less. In the work from Chapter 4, constraints on the task-processing net-

work topology and on the fictitious trading economy are given that guarantee totally

180

asynchronous convergence to the Nash equilibrium of the system. Moreover, it is

shown that the competitive equilibrium has features that are favorable to the per-

formance of the group as a whole. In an autonomous air vehicle example given, a

vehicle facing a relatively high rate of encounters with tasks volunteers less to pro-

cess the tasks of its neighbors, and its neighbors volunteer to process its tasks more.

Thus, despite being driven by local utility functions, the decentralized group as a

whole has features similar to groups of load balancing agents. Moreover, the con-

ditions that guarantee convergence to these competitive equilibria with cooperative

features may help to explain similar structures in natural cooperative groups. In fact,

similar conditions exist in cooperative birth–death networks used to study emergent

altruism [59, 70–72].

6.4 Pareto Optimal Constrained Distributed Resource Allo-

cation

As discussed by Bertsekas and Tsitsiklis [19], distributed numerical optimization is

best suited for problems with separable configuration spaces. Otherwise, agents must

coordinate actions so that changes in variables on one agent properly constrain the

changes in variables on a different agent at each numerical iteration. Consequently,

optimization problems with non-separable constraints are usually re-cast into a dual

space where each optimization variable is associated with a particular constraint.

For example, an optimization problem that operates over an n-dimensional space

with m constraints has a dual optimization problem that is unconstrained over an

m-dimensional configuration space. Unfortunately, the separability of the primal

cost function does not imply the separability of the dual cost function. So parallel

distributed optimization may still be infeasible in the dual space.

181

To mitigate the complications introduced by parallel distributed optimization,

the work in Chapter 4 uses distributed numerical optimization to solve for a Nash

equilibrium. That is, each of n agents has independent constraints and iterates toward

locally optimal solutions. Ideally, a distributed numerical optimization algorithm

would solve for Pareto equilibria. That is, each agent iterates toward solutions that

increase not only its local utility function but also the utility function of other agents

on the network. As shown by Verkama et al. [120], distributed Pareto optimization

is possible even when each of n agents is not equipped with knowledge of the utility

functions on other agents. However, the agents must communicate proposals and

responses to coordinate their motion to guarantee mutual benefits. Moreover, the

configuration space is assumed to have separable constraints.

So in Chapter 5, a distributed numerical method for constrained Pareto optimiza-

tion is introduced. The approach iterates over the primal space, but it also includes

aspects of dual-space methods. In particular, it is assumed that n independent agents

maintain uniform motion within the n-dimensional primal space. It then assumes that

each of m additional agents corresponds to one of the m constraints. Whenever the

uniform motion of the n agents causes one of the m constraints to be violated, the

corresponding constraint agent restores the system back to the constraint; however,

its restoration direction is slanted away from the gradient. Consequently, the repeated

violation and reassertion of each constraint eventually leads the system to come to

rest near its Pareto optimal solution. None of the n agents coordinate with each other,

and each of the m agents has no knowledge of the existence of any of the other m

agents. Thus, coordination between constraint agents is stigmergic. It is shown that

these methods are particularly amenable to intelligent lighting [e.g., 40, 63, 77, 124]

182

where distributed lights and sensors must maintain appropriate lighting levels while

minimizing power usage. However, the constrained optimization problem is a gener-

alization of social foraging distributions from behavioral ecology [34, 115], economic

dispatch problems in power systems engineering [17], and distributed resource allo-

cation problems in autonomous vehicles [31, 66, 95, 96]. Thus, Chapter 5 suggests

distributed algorithms that can be used in a wide range of constrained optimization

applications.

183

Chapter 7: Future Directions

7.1 Generalized Task-Processing Agents

The generalized solitary task-processing agent described in Chapter 1 provides an

analysis framework for optimal task-type and task-processing-length choice. However,

the forager described by Gendron and Staddon [35] also must choose its search speed

in an environment mixed with some conspicuous and some cryptic prey. Because the

forager has limited detection capabilities at high speed, the optimal speed choice may

be less than the forager’s maximum speed. If the most cryptic prey are also the ones

with lowest profitability, the forager should ignore these prey and travel at maximum

speed, but the choice of prey types to ignore is determined partly by the search

speed as it impacts the encounter rate of all types. So choosing the two problems

of choosing optimal task-type preference and optimal search speed are coupled. As

discussed by Pavlic and Passino [81], this problem applies to autonomous air vehicles

as well. The advantage-to-disadvantage optimization framework described in this

dissertation assumes fixed encounter rates and thus fixed speeds. Hence, an important

future direction is to generalize the results of Gendron and Staddon and Pavlic and

Passino to include a parameter analogous to search speed that modulates encounter

rates.

184

Decision-Making Heuristics: The optimal decision-making heuristic in Chap-

ter 2 is shown in simulation to converge to the optimal long-term rate of gain so long

as it faces encounters according to a Poisson process. Otherwise, disjoint suboptimal

equilibria are generated that can attract the fixation of the otherwise optimal task-

processing agent. The trajectories generated by the decision-making heuristic come

from a stochastic process formed by events which depend upon the outcome of prior

events. That is, because the decision-making heuristic is sensitive to the present

state of the task-processing agent and also affects the future state, events in each

realization of the process are coupled. Consequently, the generated stochastic process

has low analytical tractability. If the heuristic is to be used in real engineering

implementations, its convergence characteristics need to be better understood. So

an important future direction is to apply rigorous stochastic convergence analysis

methods to the decision-making heuristic discussed in Chapter 2.

7.2 Cooperative Task-Processing Agents

The basic cooperative task-processing networks described in Chapter 4 can be

expanded in several useful directions. First, each agent adjusts a single volunteering

preference that applies to all agents that submit task-processing requests to it. Con-

sequently, the convergence analysis is simplified because each decision variable is a

scalar. However, richer behaviors are possible if agents can adjust per-agent volun-

teering preferences. For example, an agent may cooperate differently with an agent

that frequently submits task-processing requests than it will with an agent that rarely

submits requests. An additional weakness of the present cooperative task-processing

network formulation is that it assumes agents either have infinite processing capacity

185

or that tasks take negligible processing time. These issues are the central motivations

of the queueing and flexible manufacturing system of Cruz [26] and Perkins and Ku-

mar [86]. Likewise, it is an important future direction to incorporate the processing

time of each task into the problem formulation. Following the example from optimal

foraging theory, it may be possible to associate a processing time with each encoun-

tered task type and model the stochastic limit of the long-term rate of gain on each

agent. If this utility function has a tractable structure, it may be possible to show

distributed Nash equilibrium computation results.

7.3 Distributed Optimization with Constraints

The distributed optimization algorithm described in Chapter 5 has attractive re-

sults in simulation and in experimental studies on test systems (e.g., an intelligent

lighting testbed). However, more analytical results are needed to understand its ro-

bustness characteristics. The present theoretical analysis implies that ultimate error

bounds on the fixed set of the algorithm depend upon the particular cost function

being minimized, and the geometric characteristics of the fixed set when the Eu-

clidean norm is minimized suggests a tight error bound; however, exactly how the

gradient shape, simultaneity of events, and order of events affect the algorithm con-

vergence is not well understood. Moreover, although the present framework allows for

simultaneous events, it does not allow the order of those events nor the events which

are simultaneous to change. An assumption of partial asynchrony as described by

Bertsekas and Tsitsiklis [19] would be a beneficial adjustment to the present theory.

Additionally, the case for multiple active constraints needs to be investigated with the

same rigor as the case of a single active constraint. Once these issues are handled, the

186

formulation may be adjusted to support non-linear constraint surfaces. The present

results suggest that the algorithm should also support convex constraint surfaces,

but this conjecture needs to be verified analytically. Additionally, if non-linear con-

straint surfaces are used, more complex automatic commissioning procedures need to

be investigated. Finally, although intelligent lighting is a natural application for this

distributed algorithm, other applications (e.g., optimal economic dispatch in power

systems) are possible and should be explored.

187

Bibliography

[1] George W. Ainslie. Impulse control in pigeons. Journal of the Experimental
Analysis of Behavior, 21(3):485–489, May 1974.

[2] George W. Ainslie. Specious reward: a behavioral theory of impulsiveness and
impulse control. Psychological Bulletin, 82(4):463–496, July 1975.

[3] Eitan Altman, Arzad A. Kherani, Pietro Michiardi, and Refik Molva. Non-

cooperative forwarding in ad-hoc networks. In Proceedings of Networking, vol-
ume 3462 of Lecture Notes in Computer Science, pages 486–498, 2005.

[4] Eitan Altman, Anurag Kumar, D. Kumar, and R. Venkatesh. Cooperative and
non-cooperative control in IEEE 802.11 WLANs. In Proceedings of the 19th

International Teletraffic Congress, Beijing, August 29 – September 2, 2005.

[5] Yair Amir, Baruch Awerbuch, Amnon Barak, R. Sean Borgstrom, and Arie

Keren. An opportunity cost approach for job assignment in a scalable computing
cluster. IEEE Transactions on Parallel and Distributed Systems, 11(7):760–768,

July 2000. DOI:10.1109/71.877834.

[6] Donald Thomas Anderson. Invertebrate Zoology. Oxford University Press, 2001.

ISBN 978-0195513684.

[7] Burton W. Andrews, Kevin M. Passino, and Thomas A. Waite. Forag-

ing theory for decision-making system design: task-type choice. In Proceed-

ings of the 43rd IEEE Conference on Decision and Control, volume 5, pages
4740–4745, Nasssau, Bahamas, December 14–17, 2004. ISBN 0-7803-8682-5.

DOI:10.1109/CDC.2004.1429539.

[8] Burton W. Andrews, Kevin M. Passino, and Thomas A. Waite. Social foraging

theory for robust multiagent system design. IEEE Transactions on Automation
Science and Engineering, 4(1):79–86, January 2007.

[9] Burton W. Andrews, Kevin M. Passino, and Thomas A. Waite. Foraging theory
for autonomous vehicle decision-making system design. Journal of Intelligent

and Robotic Systems, 49(1):39–65, May 2007. DOI:10.1007/s10846-007-9138-9.

188

http://dx.doi.org/10.1109/71.877834
http://dx.doi.org/10.1109/CDC.2004.1429539
http://dx.doi.org/10.1007/s10846-007-9138-9

[10] Hal Arkes and Catherine Blumer. The psychology of sunk cost. Organizational
Behavior and Human Decision Processes, 35:124–140, 1985.

[11] Hal R. Arkes and Peter Ayton. The sunk cost and Concorde effects: are humans

less rational than lower animals? Psychological Bulletin, 125(5):591–600, 1999.

[12] Maiko Ashibe, Mitsunori Miki, and Tomoyuki Hiroyasu. Distributed optimiza-
tion algorithm for lighting color control using chroma sensors. In Proceedings

of the IEEE International Conference on Systems, Man and Cybernetics, 2008.
SMC 2008., Singapore, 2008. DOI:10.1109/ICSMC.2008.4811270.

[13] Michael Bacharach. Economics and the Theory of Games. Macmillan, London,

1976.

[14] Tamer Başar and Geert Jan Olsder. Dynamic Noncooperative Game Theory.
Number 23 in Classics in Applied Mathematics. Society for Industrial and Ap-

plied Mathematics, Philadelphia, PA, second edition, 1999. ISBN 0-89871-429-
X.

[15] Melissa Bateson and Alex Kacelnik. Rate currencies and the foraging starling:

the fallacy of the averages revisited. Behavioral Ecology, 7(3):341–352, 1996.

DOI:10.1093/beheco/7.3.341.

[16] Melissa Bateson and Siân C. Whitehead. The energetic costs of alternative rate
currencies in the foraging starling. Ecology, 77(4):1303–1307, June 1996.

[17] Arthur R. Bergen and Vijay Vittal. Power Systems Analysis. Prentice Hall,

Upper Saddle River, NJ, second edition, 2000. ISBN 0-13-691990-1.

[18] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont,
Massachusetts, 1995.

[19] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Compu-

tation: Numerical Methods. Athena Scientific, Belmont, Massachusetts, 1997.

[20] C. M. Bradshaw and E. Szabadi. Choice between delayed reinforcers in a
discrete-trials schedule: the effect of deprivation level. Quarterly Journal of

Experimental Psychology, 44(1):1–16, 1992.

[21] Levente Buttyán and Jean-Pierre Hubaux. Stimulating cooperation in self-
organizing mobile ad hoc networks. Mobile Networks and Applications, 8:579–

592, 2003.

[22] Rajkumar Buyya. Economic-based Distributed Resource Management and
Scheduling for Grid Computing. PhD thesis, Monash University, Melbourne,

Australia, April 2002.

189

http://dx.doi.org/10.1109/ICSMC.2008.4811270
http://dx.doi.org/10.1093/beheco/7.3.341

[23] Eric L. Charnov. Optimal Foraging: Some Theoretical Explorations. PhD thesis,
University of Washington, 1973.

[24] Eric L. Charnov. Optimal foraging: the marginal value theorem. Theoretical
Population Biology, 9(2):129–136, April 1976.

[25] Eric L. Charnov. Optimal foraging: attack strategy of a mantid. American
Naturalist, 110(971):141–151, January–February 1976.

[26] Rene L. Cruz. A calculus for network delay, part II: network analysis.
IEEE Transactions on Information Theory, 37(1):132–141, January 1991.

DOI:10.1109/18.61110.

[27] Richard Dawkins and Tamsie R. Carlisle. Parental investment, mate desertion
and a fallacy. Nature, 262(5564):131–133, July 8, 1976.

[28] Lester E. Dubins. On curves of minimal length with a constraint on aver-
age curvature and with prescribed initial and terminal positions and tangents.

American Journal of Mathematics, 79:497–516, 1957.

[29] Catherine A. Faver and Elizabeth B. Strand. To leave or to stay? Journal of In-

terpersonal Violence, 18(12):1367–1377, 2003. DOI:10.1177/0886260503258028.

[30] Joan Feigenbaum and Scott Shenker. Distributed algorithmic mechanism de-

sign: recent results and future directions. In Proceedings of the 6th Interna-
tional Workshop on Discrete Algorithms and Methods for Mobile Computing

and Communication, pages 1–13, Atlanta, Georgia, USA, September 28, 2002.
ISBN 1-58113-587-4. DOI:10.1145/570810.570812.

[31] Jorge Finke and Kevin M. Passino. Stable cooperative vehicle distributions for

surveillance. Journal of Dynamic Systems, Measurement, and Control, 129(5):
597–608, 2007. DOI:10.1115/1.2767656.

[32] Jorge Finke, Kevin M. Passino, and Andrew G. Sparks. Stable task load bal-
ancing for cooperative control of networked autonomous air vehicles. IEEE

Transactions on Control Systems Technology, 14(5):789–803, September 2006.
DOI:10.1109/TCST.2006.876902.

[33] John P. Fletcher, John P. Hughes, and Ian F. Harvey. Life expectancy and egg
load affect oviposition decisions of a solitary parasitoid. Proceedings: Biological

Sciences, 258(1352):163–167, November 22, 1994.

[34] Stephen Dewitt Fretwell and Henry L. Lucas, Jr. On territorial behavior and

other factors influencing habitat distribution in birds: I. theoretical develop-
ment. Acta Biotheoretica, 19(1):16–36, March 1969. DOI:10.1007/BF01601953.

190

http://dx.doi.org/10.1109/18.61110
http://dx.doi.org/10.1177/0886260503258028
http://dx.doi.org/10.1145/570810.570812
http://dx.doi.org/10.1115/1.2767656
http://dx.doi.org/10.1109/TCST.2006.876902
http://dx.doi.org/10.1007/BF01601953

[35] Robert P. Gendron and John E. R. Staddon. Searching for cryptic prey: the
effect of search rate. American Naturalist, 121(2):172–186, February 1983.

[36] Alvaro E. Gil and Kevin M. Passino. Stability analysis of network-based
cooperative resource allocation strategies. Automatica, 42(2):245–250, 2005.

DOI:10.1016/j.automatica.2005.09.015.

[37] Alvaro E. Gil, Kevin M. Passino, Sriram Ganapathy, and Andrew Sparks.

Cooperative task scheduling for networked uninhabited air vehicles. IEEE
Transactions on Aerospace and Electronic Systems, 44(2):561–581, April 2008.

DOI:10.1109/TAES.2008.4560207.

[38] Luc-Alain Giraldeau and Thomas Caraco. Social Foraging Theory. Princeton

University Press, Princeton, NJ, 2000.

[39] Luc-Alain Giraldeau and Barbara Livoreil. Game theory and social foraging. In
Lee Alan Dugatkin and Hudson Kern Reeve, editors, Game Theory and Animal

Behavior, pages 16–37. Oxford University Press, New York, 1998.

[40] J. Granderson, Y.-J. Wen, A. M. Agogino, and K. Goebel. Towards demand-

responsive intelligent lighting with wireless sensing and actuation. In Proceed-
ings of the IESNA (Illuminating Engineering Society of North America) 2004

Annual Conference, pages 265–274, Tampa, FL, 2004.

[41] Leonard Green, E. B. Fisher Jr., Steven Perlow, and Lisa Sherman. Preference

reversal and self-control: choice as a function of reward amount and delay.
Behaviour Analysis Letters, 1:43–51, 1981.

[42] Daniel Grosu and Anthony T. Chronopoulos. Algorithmic mecha-

nism design for load balancing in distributed systems. IEEE Trans-
actions on Systems, Man, and Cybernetics, 34(1):77–84, February 2004.

DOI:10.1109/TSMCB.2002.805812.

[43] W. D. Hamilton. The genetical evolution of social behavior. I. Journal of

Theoretical Biology, 7(1):1–16, 1964.

[44] Lawrence D. Harder and Leslie A. Real. Why are bumble bees risk averse?

Ecology, 68(4):1104–1108, 1987.

[45] George E. Heimpel and Jay A. Rosenheim. Egg limitation in parasitoids: a

review of the evidence and a case study. Biological Control, 11(2):160–168,
February 1998. DOI:10.1006/bcon.1997.0587.

191

http://dx.doi.org/10.1016/j.automatica.2005.09.015
http://dx.doi.org/10.1109/TAES.2008.4560207
http://dx.doi.org/10.1109/TSMCB.2002.805812
http://dx.doi.org/10.1006/bcon.1997.0587

[46] Samual E. Henly, Allison Ostdiek, Erika Blackwell, Sarah Knutie, Aimee S.
Dunlap, and David W. Stephens. The discounting-by-interruptions hy-

pothesis: model and experiment. Behavioral Ecology, 19(1):154–162, 2008.
DOI:10.1093/beheco/arm110.

[47] Hirofumi Hirakawa. Diet optimization with a nutrient or toxin constraint. The-

oretical Population Biology, 47(3):331–346, June 1995.

[48] Hirofumi Hirakawa. Digestion-constrained optimal foraging in generalist mam-
malian herbivores. Oikos, 78(1):37–47, February 1997.

[49] Hirofumi Hirakawa. How important is digestive quality? a correction of Ver-

linden and Wiley’s digestive rate model. Evolutionary Ecology, 11(2):249–251,
March 1997.

[50] Alasdair I. Houston and John M. McNamara. The choice of two prey types that

minimizes the probability of starvation. Behavioral Ecology and Sociobiology,
17(2):135–141, July 1985. DOI:10.1007/BF00299245.

[51] Alasdair I. Houston and John M. McNamara. Models of Adaptive Behavior.

Cambridge University Press, Cambridge, 1999.

[52] Ali Ipakchi and Farrokh Albuyeh. Grid of the future. IEEE Power and Energy

Magazine, 7(2):52–62, March/April 2009. DOI:10.1109/MPE.2008.931384.

[53] Yoh Iwasa, Yoshito Suzuki, and Hiroyuki Matsuda. Theory of ovipo-
sition strategy of parasitoids. I. effect of mortality and limited egg

number. Theoretical Population Biology, 26(2):205–227, October 1984.
DOI:10.1016/0040-5809(84)90030-3.

[54] Elizabeth M. Jakob. Individual decisions and group dynamics: why phol-

cid spiders join and leave groups. Animal Behaviour, 68(1):9–20, July 2004.
DOI:10.1016/j.anbehav.2003.06.026.

[55] M. V. Johns and R. G. Miller, Jr. Average renewal loss rates. Annals of

Mathematical Statistics, 34(2):396–401, June 1963.

[56] Chandra Kanodia, Robert Bushman, and John Dickhaut. Escalation errors
and the sunk cost effect: an explanation based on reputation and information

asymmetries. Journal of Accounting Research, 27(1):59–77, Spring 1989.

[57] Danny B. Lange. Mobile objects and mobile agents: the future of distributed
computing? In Eric Jul, editor, ECOOP’98 — Object-Oriented Programming:

12th European Conference, Brussels, Belgium, July 20–24, 1998, Proceedings,
volume 1445 of Lecture Notes in Computer Science, pages 1–12, Berlin, July 20–

24, 1998. Springer. ISBN 978-3-540-64737-9. DOI:10.1007/BFb0054083.

192

http://dx.doi.org/10.1093/beheco/arm110
http://dx.doi.org/10.1007/BF00299245
http://dx.doi.org/10.1109/MPE.2008.931384
http://dx.doi.org/10.1016/0040-5809(84)90030-3
http://dx.doi.org/10.1016/j.anbehav.2003.06.026
http://dx.doi.org/10.1007/BFb0054083

[58] Danny B. Lange and Mitsuru Oshima. Seven good reasons for mo-
bile agents. Communications of the ACM, 42(3):88–89, March 1999.

DOI:10.1145/295685.298136.

[59] Erez Lieberman, Christoph Hauert, and Martin A. Nowak. Evolution-

ary dynamics on graphs. Nature, 433(7023):312–316, January 20, 2005.
DOI:10.1038/nature03204.

[60] Rajiv T. Maheswaran, Orhan Çağri Imer, and Tamer Başar. Agent mobility
under price incentives. In Proceedings of the 38th IEEE Conference on Decision

and Control, volume 4, pages 4020–4025, Phoenix, Arizona, USA, December 7–
10, 1999. DOI:10.1109/CDC.1999.827989.

[61] Andreu Mas-Colell, Michael Dennis Whinston, and Jerry R. Green. Microeco-

nomic Theory. Oxford University Press, New York, 1995.

[62] C. F. McDiarmid and M. E. Rilling. Reinforcement delay and reinforcement

rate as determinants of schedule preference. Psychonomic Science, 2:195–196,
1965.

[63] Mitsunori Miki, Emi Asayama, and Tomoyuki Hiroyasu. Intelligent lighting
system using visible-light communication technology. In Proceedings of the

2006 IEEE Conference on Cybernetics and Intelligent Systems, pages 1–6, 2006.
DOI:10.1109/ICCIS.2006.252257.

[64] Oscar P. J. M. Minkenberg, Marc Tatar, and Jay A. Rosenheim. Egg load as a
major source of variability in insect foraging and oviposition behavior. Oikos,

65(1):134–142, October 1992.

[65] John Monterosso and George W. Ainslie. Beyond discounting: possible experi-
mental models of impulse control. Psychopharmacology, 146:339–347, 1999.

[66] Brandon J. Moore, Jorge Finke, and Kevin M. Passino. Optimal allocation of
heterogeneous resources in cooperative control scenarios. Automatica, 45(3):

711–715, March 2009. DOI:10.1016/j.automatica.2008.09.007.

[67] Walter Nicholson. Microeconomic Theory: Basic Principles and Extensions.

Dryden Press, Fort Worth, TX, fifth edition, 1992.

[68] Bart A. Nolet, Oscar Langevoord, Richard M. Bevan, Kirsten R.

Engelaar, Marcel Klaassen, Roef J. W. Mulder, and S. Van Dijk.
Spatial variation in tuber depletion by swans explained by differ-

ences in net intake rates. Ecology, 82(6):1655–1667, June 2001.
DOI:10.1890/0012-9658(2001)082[1655:SVITDB]2.0.CO;2.

193

http://dx.doi.org/10.1145/295685.298136
http://dx.doi.org/10.1038/nature03204
http://dx.doi.org/10.1109/CDC.1999.827989
http://dx.doi.org/10.1109/ICCIS.2006.252257
http://dx.doi.org/10.1016/j.automatica.2008.09.007
http://dx.doi.org/10.1890/0012-9658(2001)082[1655:SVITDB]2.0.CO;2

[69] Peter Nonacs. State dependent behavior and the marginal value theorem. Be-
havioral Ecology, 12(1):71–83, January 2001.

[70] Martin A. Nowak. Five rules for the evolution of cooperation. Science, 314
(5805):1560–1563, December 8, 2006. DOI:10.1126/science.1133755.

[71] Martin A. Nowak and Robert M. May. Evolutionary games and spatial chaos.
Nature, 359(6398):826–829, October 29, 1992. DOI:10.1038/359826a0.

[72] Hisashi Ohtsuki, Christoph Hauert, Erez Lieberman, and Martin A. Nowak.
A simple rule for the evolution of cooperation on graphs. Nature, 441(7092):

502–505, 2006. DOI:10.1038/nature04605.

[73] Ola Olsson and Joel S. Brown. The foraging benefits of information
and the penalty of ignorance. Oikos, 112(2):260–273, February 2006.

DOI:10.1111/j.0030-1299.2006.13548.x.

[74] Ola Olsson and Noél M. A. Holmgren. The survial-rate-maximizing policy for

Bayesian foragers: wait for good news. Behavioral Ecology, 9(4):345–353, 1998.

[75] Andy Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Tech-

nologies. O’Reilly & Associates, Sebastopol, CA, 2001. ISBN 978-0-596-00110-0.

[76] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT

Press, Cambridge, MA, 1994. ISBN 0-262-15041-7.

[77] Meng-Shiuan Pan, Lun-Wu Yeh, Yen-Ann Chen, Yu-Hsuan Lin, and Yu-Chee

Tseng. A WSN-based intelligent light control system considering user ac-
tivities and profiles. IEEE Sensors Journal, 8(10):1710–1721, October 2008.

DOI:10.1109/JSEN.2008.2004294.

[78] Kevin M. Passino. Biomimicry of bacterial foraging for distributed optimization
and control. IEEE Control Systems Magazine, 22(3):52–67, 2002.

[79] Kevin M. Passino. Biomimicry for Optimization, Control, and Automation.
Springer-Verlag, London, 2005.

[80] Theodore P. Pavlic. Optimal foraging theory revisited. Master’s
thesis, The Ohio State University, Columbus, OH, 2007. URL

http://www.ohiolink.edu/etd/view.cgi?acc_num=osu1181936683.

[81] Theodore P. Pavlic and Kevin M. Passino. Foraging theory for autonomous

vehicle speed choice. Engineering Applications of Artificial Intelligence, 22:
482–489, 2009. DOI:10.1016/j.engappai.2008.10.017.

194

http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1038/359826a0
http://dx.doi.org/10.1038/nature04605
http://dx.doi.org/10.1111/j.0030-1299.2006.13548.x
http://dx.doi.org/10.1109/JSEN.2008.2004294
http://www.ohiolink.edu/etd/view.cgi?acc_num=osu1181936683
http://dx.doi.org/10.1016/j.engappai.2008.10.017

[82] Theodore P. Pavlic and Kevin M. Passino. When rate maximization is im-
pulsive. Behavioral Ecology and Sociobiology, 64(8):1255–1265, August 2010.

DOI:10.1007/s00265-010-0940-1.

[83] Theodore P. Pavlic and Kevin M. Passino. The sunk-cost effect

as an optimal rate-maximizing behavior. Acta Biotheoretica, 2010.
DOI:10.1007/s10441-010-9107-8. In press.

[84] Theodore P. Pavlic and Kevin M. Passino. Generalizing foraging theory for
analysis and design. International Journal of Robotics Research, 2010. Submit-

ted.

[85] Theodore P. Pavlic and Kevin M. Passino. Cooperative task processing. IEEE

Transactions on Automatic Control, 2010. Submitted.

[86] James R. Perkins and P. R. Kumar. Stable, distributed, real-time scheduling of
flexible manufacturing/assembly/disassembly systems. IEEE Transactions on

Automatic Control, 34(2):139–148, February 1989. DOI:10.1109/9.21085.

[87] Peter Pirolli. Rational analyses of information foraging on the web. Cognitive

Science, 29(3):343–373, 2005.

[88] Peter Pirolli. Information Foraging Theory: Adaptive Interaction with Infor-

mation. Oxford University Press, New York, NY, 2007.

[89] Peter Pirolli and Stuart Card. Information foraging. Psychological Review, 106

(4):643–675, 1999.

[90] R. J. Prokopy, B. D. Roitberg, and R. I. Vargas. Effects of egg load on finding

and acceptance of host fruit in Ceratitis capitata flies. Physiological Entomology,

19(2):124–132, 1994. DOI:10.1111/j.1365-3032.1994.tb01085.x.

[91] H. Ronald Pulliam. On the theory of optimal diets. American Naturalist, 108

(959):59–74, January–February 1974.

[92] Graham H. Pyke, H. Ronald Pulliam, and Eric L. Charnov. Optimal foraging: a

selective review of theory and tests. Quarterly Review of Biology, 52(2):137–154,
1977.

[93] Dongyu Qiu and Rayadurgam Srikant. Modeling and performance analysis of
BitTorrent-like peer-to-peer networks. In Raj Yavatkar, Ellen W. Zegura, and

Jennifer Rexford, editors, Proceedings of the ACM SIGCOMM 2004 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Com-

munication, pages 367–378, Portland, Oregon, USA, August 30 – September 3,
2004. ISBN 1-58113-862-8. DOI:10.1145/1015467.1015508.

195

http://dx.doi.org/10.1007/s00265-010-0940-1
http://dx.doi.org/10.1007/s10441-010-9107-8
http://dx.doi.org/10.1109/9.21085
http://dx.doi.org/10.1111/j.1365-3032.1994.tb01085.x
http://dx.doi.org/10.1145/1015467.1015508

[94] Gwenael Quaintenne, Jan A. van Gils, Pierrick Bocher, Anne Dekinga, and The-
unis Piersma. Diet selection in a molluscivore shorebird across Western Europe:

does it show short- or long-term intake rate-maximization? Journal of Animal
Ecology, 79(1):53–62, January 2010. DOI:10.1111/j.1365-2656.2009.01608.x.

[95] Nicanor Quijano and Kevin M. Passino. The ideal free distribution:
theory and engineering application. IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, 37(1):154–165, February 2007.
DOI:10.1109/TSMCB.2006.880134.

[96] Nicanor Quijano and Kevin M. Passino. Honey bee social foraging algorithms
for resource allocation: theory and application. Engineering Applications of

Artificial Intelligence, 2010. To appear.

[97] Nicanor Quijano, Burton W. Andrews, and Kevin M. Passino. Foraging theory
for multizone temperature control. IEEE Computational Intelligence Magazine,

1(4):18–27, November 2006. DOI:10.1109/MCI.2006.329704.

[98] Howard Rachlin and Leonard Green. Commitment, choice and self-control.

Journal of the Experimental Analysis of Behavior, 17(1):15–22, January 1972.

[99] Dickon Reed, Ian Pratt, Paul Menage, Stephen Early, and Neil Stratford.

Xenoservers: accountable execution of untrusted programs. In Proceedings of
the Seventh Workshop on Hot Topics in Operating Systems, pages 136–141, Rio

Rico, Arizona, USA, March 28–30, 1999. DOI:10.1109/HOTOS.1999.798390.

[100] Jay A. Rosenheim. An evolutionary argument for egg limitation. Evolution, 50

(5):2089–2094, October 1996.

[101] Jay A. Rosenheim and David Rosen. Foraging and oviposition decisions in the
parasitoid Aphytis lingnanesis: distinguishing the influences of egg load and

experience. Journal of Animal Ecology, 60(3):873–893, October 1991.

[102] Edward E. Ruppert, Richard S. Fox, and Robert D. Barnes. Invertebrate Zool-

ogy: A Functional Evolutionary Approach. Brooks/Cole Publishing, Belmont,
CA, seventh edition, 2004. ISBN 978-0030259821.

[103] Thomas W. Schoener. Theory of feeding strategies. Annual Review of Ecology
and Systematics, 2:369–404, 1971.

[104] Eric Siegel and Howard Rachlin. Soft commitment: self-control achieved by
response persistence. Journal of the Experimental Analysis of Behavior, 64(2):

117–128, September 1995.

196

http://dx.doi.org/10.1111/j.1365-2656.2009.01608.x
http://dx.doi.org/10.1109/TSMCB.2006.880134
http://dx.doi.org/10.1109/MCI.2006.329704
http://dx.doi.org/10.1109/HOTOS.1999.798390

[105] Andrew Sih and Bent Christensen. Optimal diet theory: when does it work,
and when and why does it fail? Animal Behaviour, 61(2):379–390, February

2001. DOI:10.1006/anbe.2000.1592.

[106] Reid G. Smith. The contract net protocol: high-level communication and con-

trol in a distributed problem solver. IEEE Transactions on Computers, 29(12):
1104–1113, December 1980. DOI:10.1109/TC.1980.1675516.

[107] Mark Snyderman. Optimal prey selection: the effects of food deprivation. Be-
haviour Analysis Letters, 3:359–369, 1983.

[108] Barry M. Staw. The escalation of commitment to a course of action. Academy
of Management Review, 6(4):577–587, October 1981.

[109] David W. Stephens. Discrimination, discounting and impulsivity: a role for

an informational constraint. Philosophical Transactions of the Royal Society B,
357(1427):1527–1537, 2002. DOI:10.1098/rstb.2002.1062.

[110] David W. Stephens and Dick Anderson. The adaptive value of preference for
immediacy: when shortsighted rules have farsighted consequences. Behavioral

Ecology, 12(3):330–339, 2001.

[111] David W. Stephens and Eric L. Charnov. Optimal foraging: some simple

stochastic models. Behavioral Ecology and Sociobiology, 10:251–263, 1982.

[112] David W. Stephens and John R. Krebs. Foraging Theory. Princeton University

Press, Princeton, NJ, 1986.

[113] David W. Stephens and Collen M. McLinn. Choice and context: test a

simple short-term choice rule. Animal Behaviour, 66(1):59–70, July 2003.

DOI:10.1006/anbe.2003.2177.

[114] David W. Stephens, Benjamin Kerr, and Esteban Fernández-Juricic. Impulsive-

ness without discounting: the ecological rationality hypothesis. Proceedings of
the Royal Society B, 271(1556):2459–2465, 2004. DOI:10.1098/rspb.2004.2871.

[115] David W. Stephens, Joel S. Brown, and Ronald C. Ydenberg, editors. Foraging:
Behavior and Ecology. University of Chicago Press, Chicago, IL, 2007.

[116] L. D. Stone. Theory of Optimal Search. Academic Press, 1975.

[117] Alan R. Templeton and Lawrence R. Lawlor. The fallacy of the averages in

ecological optimization theory. American Naturalist, 117(3):390–393, March
1981.

197

http://dx.doi.org/10.1006/anbe.2000.1592
http://dx.doi.org/10.1109/TC.1980.1675516
http://dx.doi.org/10.1098/rstb.2002.1062
http://dx.doi.org/10.1006/anbe.2003.2177
http://dx.doi.org/10.1098/rspb.2004.2871

[118] Jan A. van Gils, Ingrid W. Schenk, Oscar Bos, and Theunis Piersma. Incom-
pletely informed shorebirds that face a digestive constraint maximize net energy

gain when exploiting patches. American Naturalist, 161(5):777–793, May 2003.
DOI:10.1086/374205.

[119] Jan A. van Gils, Sem R. de Rooij, Jelmer van Belle, Jaap van der Meer, Anne
Dekinga, Theunis Piersma, and Rudi Drent. Digestive bottleneck affects forag-

ing decisions in red knots Calidris canutus. I. prey choice. Journal of Animal
Ecology, 74(1):105–119, January 2005. DOI:10.1111/j.1365-2656.2004.00903.x.

[120] Markku Verkama, Harri Ehtamo, and Raimo P. Hämäläinen. Distributed com-
putation of pareto solutions in n-player games. Mathematical Programming, 74:

29–45, 1996.

[121] Chris Verlinden and R. Haven Wiley. The constraints of digestive rate: an
alterantive model of diet selection. Evolutionary Ecology, 3(3):264–272, July

1989. DOI:10.1007/BF02270727.

[122] Éric Wajnberg. Time allocation strategies in insect parasitoids: from ultimate

predictions to proximate behavioral mechanisms. Behavioral Ecology and So-
ciobiology, 60(5):589–611, September 2006. DOI:10.1007/s00265-006-0198-9.

[123] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O. Kephart,
and W. Schott Stornetta. Spawn: a distributed computational economy.

IEEE Transactions on Software Engineering, 18(2):103–117, February 1992.
DOI:10.1109/32.121753.

[124] Yao-Jung Wen and Alice M. Agogino. Wireless networked lighting systems for
optimizing energy savings and user satisfaction. In Proceedings of Wireless Hive

Networks Conference, Austin, TX, USA, 2008.

[125] Christopher J. Whelan and Joel S. Brown. Optimal foraging and gut con-
straints: reconciling two schools of thought. Oikos, 110(3):481–496, September

2005. DOI:10.1111/j.0030-1299.2005.13387.x.

[126] James E. White. Telescript technology: mobile agents. In Dejan Milojičić, Fred-

erick Douglis, and Richard Wheeler, editors, Mobility: Processes, Computers,
and Agents, pages 460–493. ACM Press, New York, 1999. ISBN 0-201-37928-7.

[127] K. David Young, Vadim I. Utkin, and Ümit Özgüner. A control engineer’s guide
to sliding mode control. IEEE Transactions on Control Systems Technology, 7

(3):328–342, May 1999. DOI:10.1109/87.761053.

198

http://dx.doi.org/10.1086/374205
http://dx.doi.org/10.1111/j.1365-2656.2004.00903.x
http://dx.doi.org/10.1007/BF02270727
http://dx.doi.org/10.1007/s00265-006-0198-9
http://dx.doi.org/10.1109/32.121753
http://dx.doi.org/10.1111/j.0030-1299.2005.13387.x
http://dx.doi.org/10.1109/87.761053

	Design and Analysis of Optimal Task-Processing Agents
	Abstract
	Dedication
	Acknowledgments
	Vita
	Table of Contents
	List of Tables
	List of Figures
	I Behaviors of a Solitary Optimal Task-Processing Agent
	1. Generalizing Foraging Theory for Analysis and Design
	1.1 Model of an Autonomous Task-processing Agent
	1.1.1 Background: Foraging-inspired Task-processing Agents
	1.1.2 Classical Optimal Foraging Objective
	1.1.3 New Objectives for Finite-event Scenario

	1.2 A Graphical Optimization Approach
	1.2.1 Optimization of the Classical Objective
	1.2.2 Optimal Behaviors from Alternate Objectives

	1.3 An Analytical Optimization Approach
	1.3.1 Characterization of Optimal Behaviors
	1.3.2 Motivating Interpretations
	1.3.3 Algorithms for Finding an Optimal Generalized Foraging Behavior

	1.4 Examples: Theory and Application
	1.4.1 Comparison of Theoretical Results
	1.4.2 Simulation Results

	1.5 Conclusions

	2. When Rate Maximization Is Impulsive
	2.1 Background
	2.1.1 Impulsiveness Without Discounting
	2.1.2 A Graph of the Prey Model
	2.1.3 Justification for Adaptive Rate-maximization Model
	2.1.4 Other Ostensible Violations of Rate Maximization

	2.2 Model
	2.2.1 State-based Real-time Adaptive Rate-maximization
	2.2.2 State-based Real-time Adaptive Model Consistent with DRM

	2.3 Results
	2.3.1 Simulation: Simultaneous Encounters Lead to Suboptimality
	2.3.2 Simulation: Pre-experiment Feeding Restores Optimality
	2.3.3 Simulation: Equal-opportunity Foragers and Simultaneous Encounters
	2.3.4 Simulation: DRM-inspired Rule has DRM-like Preferences

	2.4 Discussion
	2.4.1 Binary-choice Impulsiveness can be Sequentially Optimal in Nature
	2.4.2 A Mechanism Consistent with Digestive Rate Model

	3. The Sunk-cost Effect as an Optimal Rate-maximizing Behavior
	3.1 Classical Optimal Foraging Theory
	3.2 OFT Criticism and Explicit Processing Costs
	3.3 Graphical Optimization and Long Residence Times
	3.4 The Sunk-cost Effect
	3.4.1 Initial Costs: Recognition, Acquisition, Reconnaissance
	3.4.2 Human and Nonhuman Examples
	3.4.3 Escalation Behavior

	3.5 Conclusions

	II Optimal Distributed Task Processing
	4. Cooperative Task Processing
	4.1 Task-Processing Network
	4.2 Cooperation Game Among Selfish Agents
	4.3 Distributed Computation of the Nash Equilibrium
	4.3.1 Conditions for Distributed Convergence
	4.3.2 Interpretations

	4.4 Simulation of Cooperative AAV Scenario
	4.5 Conclusion

	5. The MultiIFD as Distributed Gradient Descent for Constrained Optimization
	5.1 The Optimization Problem
	5.1.1 Characterization of Optimal Solutions
	5.1.2 Example Applications
	5.1.3 Conventional Dual-Space Optimization Methods

	5.2 Parallelizable Primal-Space Algorithm
	5.2.1 Lighting Agents
	5.2.2 Motivation: Optimization by Normal Support of Variable Gravity
	5.2.3 The MultiIFD: Optimization Under Uniform Gravity
	5.2.4 Stability of the MultiIFD

	5.3 Results
	5.3.1 Simulation Results
	5.3.2 Experimental Results

	III Summary and Conclusions
	6. Contributions
	6.1 Generalized Solitary Optimal Task-Processing Agents
	6.2 Ecological Rationality
	6.2.1 Computationally Simple Implementations and Impulsiveness
	6.2.2 Over-processing of Tasks

	6.3 Nash Optimal Cooperative Task-Processing
	6.4 Pareto Optimal Constrained Distributed Resource Allocation

	7. Future Directions
	7.1 Generalized Task-Processing Agents
	7.2 Cooperative Task-Processing Agents
	7.3 Distributed Optimization with Constraints

	Bibliography

