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minimize
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Pi = P

Pareto minimization of costs subject to conservation simplex.

Solution (from KKT) is an “upside-down” IFD:
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solution in dual space (i.e., solve for λ). ]
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� IFD (Fretwell 1972; Fretwell and Lucas 1969) ⇐⇒ Optimal power

dispatch (Bergen and Vittal 2000)

IFD as optimization problem (thought experiment):

maximize

n∑

i=1

∫ xi

0
si(y) dy subject to

n∑

i=1

xi = N

Pareto maximization of (???) subject to conservation simplex.

Right-side-up IFD:

si(xi) = λ ∀i ∈ {1, 2, . . . , n} (and truncate appropriately)

Distribute xi to equalize suitability.

[ Conical cost combination with simplex constraint set has simple

solution in dual space (i.e., solve for λ). ]
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dispatch (Bergen and Vittal 2000)

IFD as optimization problem (thought experiment):

maximize

n∑

i=1

Gi(xi) subject to

n∑

i=1

xi = N

Pareto maximization of gain(?) subject to conservation simplex.

Right-side-up IFD:

dGi(xi)

dxi
= λ ∀i ∈ {1, 2, . . . , n} (and truncate appropriately)

Distribute xi to equalize marginal gain.

[ Conical cost combination with simplex constraint set has simple

solution in dual space (i.e., solve for λ). ]
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� IFD (Fretwell 1972; Fretwell and Lucas 1969) ⇐⇒ Optimal power

dispatch (Bergen and Vittal 2000)

IFD as optimization problem (thought experiment):

maximize

n∑

i=1

Gi(ti) subject to

n∑

i=1

ti = T

Maximization of distributed gain subject to limited time inside patch.

Right-side-up IFD:

dGi(ti)

dti
= λ ∀i ∈ {1, 2, . . . , n} (and truncate appropriately)

Distribute ti to equalize marginal gain.

[ Conical cost combination with simplex constraint set has simple

solution in dual space (i.e., solve for λ). ]
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� Risk-sensitive foraging (Stephens and Charnov 1982; Stephens and

Krebs 1986) ⇐⇒ Sharpe ratio/MPT (Sharpe 1966, 1994)

Sharpe (Nobel prize, Economics, 1990) ratio:

E(R)−Rf

σ

Exactly the Z-score ranking method of risk-sensitive foraging theory.

MPT (then)→ PMPT (now) (stochastic dominance, Bawa 1982)
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dispatch (Bergen and Vittal 2000)

� Risk-sensitive foraging (Stephens and Charnov 1982; Stephens and

Krebs 1986) ⇐⇒ Sharpe ratio/MPT (Sharpe 1966, 1994)

� Iain Couzin’s (2000+) ⇐⇒ Bertsekas and Tsitsiklis (1997−) (e.g.,

mysterious torus shapes; symmetry; symmetry breaking)
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� Nice homomorphism between solitary foragers and

autonomous vehicles (Andrews et al. 2004; Charnov

1973; Quijano et al. 2006; Stephens and Krebs 1986)

� Fitness surrogate (e.g., calories, target value)

� Diverse collection of targets

� Opportunity cost: some should be ignored

� Rate maximization for long runs

� Target/task choice ⇐⇒ prey model

g − c
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J∗
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� Nice homomorphism between solitary foragers and

autonomous vehicles (Andrews et al. 2004; Charnov

1973; Quijano et al. 2006; Stephens and Krebs 1986)

� Vehicle speed choice is very similar to cryptic prey

problem described by Gendron and Staddon (1983)

� Ceteris paribus, encounter rate increases with

search speed

� Search cost increases with search speed

� Detection mistakes may vary with speed

� Non-trivial speed–prey choice coupling

� Prey =⇒ speed =⇒ rate =⇒ prey

Bobwhite quail
(Gendron and
Staddon 1983)

Les Howard
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� Nice homomorphism between solitary foragers and

autonomous vehicles (Andrews et al. 2004; Charnov

1973; Quijano et al. 2006; Stephens and Krebs 1986)

� Vehicle speed choice is very similar to cryptic prey

problem described by Gendron and Staddon (1983)

Bobwhite quail
(Gendron and
Staddon 1983)

Les Howard

� To match bobwhite quail observations, Gendron and Staddon

choose detection function P d
i (u) , (1− (u/umax)

Ki)1/Ki that

maps search speed u ∈ [0, umax] to detection probability P d
i for

tasks of type i with conspicuousness Ki ∈ [0,∞).

� No analytical tractability

� Chose n = 2 for simulation (1983)

� P d
i is strange at bounds (1 and 0) u/umax

P d
i (u)

Ki

b

b

b

b

0.4

0.8

1.5

4
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� Autonomous vehicle faces n-way merged Poisson process

� λi: encounter rate for task of type i

� (gi, ti): average (value, time) for processing task of type i

� pi: probability that task of type i is processed (decision)

� cs: cost per-unit-time of searching

� Vehicle goes through cycles of searching and processing

� Ḡ: average per-encounter gain

� T̄ : average per-encounter search and processing time

� G(t): Markov renewal–reward process for accumulated gain
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� Autonomous vehicle faces n-way merged Poisson process

� λi: encounter rate for task of type i

� (gi, ti): average (value, time) for processing task of type i

� pi: probability that task of type i is processed (decision)

� cs: cost per-unit-time of searching

� Long runtime =⇒ maximize rate of return

aslim
t→∞

G(t)

t
=

Ḡ

T̄
=

−cs +
n∑

i=1
λipigi

1 +
n∑

i=1
λipiti

, R(p)

As expected, type-II functional response (Holling’s disk equation

without any sandpaper disks).
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� λi: encounter rate for task of type i

� (gi, ti): average (value, time) for processing task of type i

� pi: probability that task of type i is processed (decision)

� cs: cost per-unit-time of searching

� In general, pi ∈ [0, 1], but

∂R(p)

∂pi
=

λigi

(

1 +
n∑

j=1
λjpjtj

)

− λiti

(

−cs +
n∑

j=1
λjpjgj

)

(

1 +
n∑

i=1
λipiti

)2



On-line prey–speed choice for n ∈ N

(Pavlic 2007; Pavlic and Passino 2009)

Introduction

Solitary foraging: from
ecology to engineering
and back

Speed choice (→)

Impulsiveness and
operant conditioning
(←)

Long patch residence
times (←)

Cooperative task
processing

Closing remarks

Engineering Serendipity Successes and New Investigations

� Autonomous vehicle faces n-way merged Poisson process

� λi: encounter rate for task of type i

� (gi, ti): average (value, time) for processing task of type i

� pi: probability that task of type i is processed (decision)

� cs: cost per-unit-time of searching

� So KKT reveals optimization is purely O(2n) combinatorial

∂R(p)

∂pi
=

λigi

(

1 +
n∑

j=1
j 6=i

λjpjtj

)

− λiti

(

−cs +
n∑

j=1
j 6=i

λjpjgj

)

(

1 +
n∑

i=1
λipiti

)2

So-called zero–one rule because p∗i ∈ {0, 1}
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� Autonomous vehicle faces n-way merged Poisson process

� λi: encounter rate for task of type i

� (gi, ti): average (value, time) for processing task of type i

� pi: probability that task of type i is processed (decision)

� cs: cost per-unit-time of searching

� So KKT reveals optimization is purely O(2n) combinatorial

∂R(p)

∂pi
=

λigi

(

1 +
n∑

j=1
j 6=i

λjpjtj

)

− λiti

(

−cs +
n∑

j=1
j 6=i

λjpjgj

)

(

1 +
n∑

i=1
λipiti

)2

So-called zero–one rule because p∗i ∈ {0, 1}

[ Sufficient condition; not necessary ]
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� Autonomous vehicle faces n-way merged Poisson process

� λi: encounter rate for task of type i

� (gi, ti): average (value, time) for processing task of type i

� pi: probability that task of type i is processed (decision)

� cs: cost per-unit-time of searching

� Classical prey ranking refines search from O(2n) to O(n+ 1)

Processed types (p∗i = 1)
︷ ︸︸ ︷
g1
t1

>
g2
t2

> . . . >
gk∗

tk∗
>

Optimal rate R(p∗)
︷ ︸︸ ︷

−cs +
k∗∑

i=1
λigi

1 +
k∗∑

i=1
λiti

>

Ignored types (p∗i = 0)
︷ ︸︸ ︷
gk∗+1

tk∗+1
> . . . >

gn
tn

where optimal p∗i = [i ≤ k∗] with k∗ ∈ {0, 1, . . . , n}
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� λi: encounter rate for task of type i

� (gi, ti): average (value, time) for processing task of type i

� pi: probability that task of type i is processed (decision)

� cs: cost per-unit-time of searching

� Classical prey ranking does not depend on λ (i.e., speed)
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� Detection function is linear interpolation of probability bounds
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P d
i (u)

b

b
b

b

umin umax

high

low
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� Search cost is also assumed to be affine function

cs(u) = csℓu+ csa
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� Speed u ∈ [umin, umax] ⊂ [0,∞) influences each encounter rate

λi(u) = uDiP
d
i (u)

where Di is the linear density in the population

� Detection function is linear interpolation of probability bounds

0

1

u

P d
i (u)

b

b
b

b

umin umax

high

low

P d
i (u) = P ℓ

i u+ P a
i

� Search cost is also assumed to be affine function

ci(u) = cℓiu+ cai

[ Processing costs can be modeled in a similar way ]
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=
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T2u2 + T1u+ 1

)2

By KKT, if quadratic numerator root u∗ ∈ [umin, umax], then u∗ is

optimal speed; otherwise, optimal speed u∗ ∈ {umin, umax} based

on sign of numerator

� Implement O(n+ 1) algorithm on-line if Di density estimates

available (Dubin’s car AAV simulations with speed filtering, Pavlic

and Passino 2009)

� Non-trivial to guarantee convergence of density estimates on-line

� Estimation process =⇒ type-II type-III functional response
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variational inequality problems

� Used in control to model unknown/unknowable

� Existing task-processing networks (TPN) (Cruz 1991; Perkins and

Kumar 1989) focus on robustness, not optimality:

� So here, elements merged from communication, TPN, and possible

analogous systems in nature (e.g., Cooperative breeding, Hamilton

and Taborsky 2005)

� Try to design system so that Nash equilibrium has

characteristics that are globally favorable
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A task-processing network is a directed graph:

� A ⊂ N: Set of task-processing agents

� P ⊆ {(i, j) ∈ A2 : i 6= j}: Directed arcs connecting distinct agents

� Vi , {j ∈ A : (j, i) ∈ P}: Set of conveyors for each i ∈ A

� Ci , {j ∈ A : (i, j) ∈ P}: Set of cooperators for each i ∈ A

� V , {j ∈ A : Cj 6= ∅}: Set of all conveyors

� C , {i ∈ A : Vi 6= ∅}: Set of all cooperators

Task flows at each agent:

� Yi ⊂ N: Possibly empty set of task types that arrive at conveyor i ∈ A

� λk
j ∈ R>0 : Encounter rate of type-k tasks at agent j ∈ A (e.g., Poisson encounters)

� πk
j ∈ [0, 1]: Probability that conveyor j ∈ A advertises an incoming k-type task to its connected cooperators Cj

� γi ∈ [0, 1]: Probability that cooperator i ∈ A volunteers for advertised task from one of its connected conveyors Vi
(collected in γ)
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� To simplify presentation of combinatorial volunteering analysis,

introduce SOBP and SOMS.

� I : finite index set

� Ω , {γi}i∈I : indexed family with γi ∈ [0, 1] for each i ∈ I

For g, h ∈ N and Γ ⊆ I ,

SOBPg(Γ) ,

|Γ|
∑

ℓ=0

1

g + ℓ

∑

C⊆Γ
|C|=ℓ

((
∏

i∈C

γi

)(
∏

k∈Γ−C

(1− γk)

))

SOMSh(Γ) ,

|Γ|
∑

ℓ=0

(−1)ℓ
1

h+ ℓ

∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

Several useful relationships between SOBP and SOMS.
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� To simplify presentation of combinatorial volunteering analysis,

introduce SOBP and SOMS. For Γ ⊆ A,

SOBP1({i, k, ℓ} − {i})

= (1− γk)(1− γℓ) +
1

2
γk(1− γℓ) +

1

2
γℓ(1− γk) +

1

3
γkγℓ

(i.e., sum of binomial products)

� For conveyor j ∈ V and cooperator i ∈ Cj = {i, k, ℓ},
SOBP1({i, k, ℓ} − {i}) is probability that i is chosen to process

an advertised task from j ∈ Vi (given that it volunteered)
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� To simplify presentation of combinatorial volunteering analysis,

introduce SOBP and SOMS. For Γ ⊆ A,

SOBP1({i, k, ℓ} − {i})

= (1− γk)(1− γℓ) +
1

2
γk(1− γℓ) +

1

2
γℓ(1− γk) +

1

3
γkγℓ

(i.e., sum of binomial products)

� For conveyor j ∈ V and cooperator i ∈ Cj = {i, k, ℓ},
SOBP1({i, k, ℓ} − {i}) is probability that i is chosen to process

an advertised task from j ∈ Vi (given that it volunteered)

� SOMS gives curvature information about SOBP

� Properties of SOMS and SOBP provide bounds for convergence

analysis (i.e., Lyapunov/non-deterministic set stability)
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For i ∈ C, the rate of gain

Ui(γ) ,

Conveyor part — constant with respect to γi
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−

Pr(i awarded task from j|i volunteers)
︷ ︸︸ ︷

SOBP1(Cj − {i})cij
)

︸ ︷︷ ︸

Cooperator part
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For i ∈ C, the rate of gain

Ui(γ) ,
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� Natural choice for distributed variational inequality is local gradient

ascent

� Asynchronous system is governed by difference inclusion (not

difference equation)

� For set stability, sufficient to show synchronous system is a

contraction mapping

� Also gives existence and uniqueness of Nash equilibrium

� Because γ ∈ [0, 1]|C| comes from product topology of intervals,

must use block maximum norm (‖γ‖∞ , maxi∈C{|γi|})

� Procedure leads to constraints on payment functions and topology
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Assume that (Payment and topological constraints):

1. For all i ∈ C and j ∈ Vi, pij is a stabilizing payment function

� For k ∈ N, p′(Q) , dp(Q)/dQ < 0 for all Q ∈ [0, k]

� For k ∈ N, p′′(Q) , d2p(Q)/dQ2 > 0 for all Q ∈ [0, k]

� For k ∈ N, γp′′(Q) ≤ −p′(Q) for all Q ∈ [γ, k − (1− γ)]
with γ ∈ [0, 1]
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2. For all j ∈ V , |Cj| ≤ 3 (i.e., no conveyor can have more than 3

outgoing links to cooperators)
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Sample stabilizing payment (inverse demand) functions

Assume that (Payment and topological constraints):

1. For all i ∈ C and j ∈ Vi, pij is a stabilizing payment function

2. For all j ∈ V , |Cj| ≤ 3 (i.e., no conveyor can have more than 3

outgoing links to cooperators)

3. For cooperator i ∈ C and j ∈ Vi, if j is a 3-conveyor (i.e.,

|Cj| = 3), then there must be some conveyor k ∈ Vi that is a

2-conveyor
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Rich yet stable task-processing network.

� “Pills” stabilize problematic areas by focussing attention

� Future research direction: Stable network motifs
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Define T : [0, 1]n 7→ [0, 1]n by T (γ) , (T1(γ), T2(γ), . . . , Tn(γ)) where, for
each i ∈ C,

Ti(γ) , min{1,max{0, γi + σi∇iUi(γ)}}

(i.e., projected gradient ascent)
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Define T : [0, 1]n 7→ [0, 1]n by T (γ) , (T1(γ), T2(γ), . . . , Tn(γ)) where, for
each i ∈ C,

Ti(γ) , min{1,max{0, γi + σi∇iUi(γ)}}

(i.e., projected gradient ascent), where

1

σi

≥ 2|Vi|max
k∈Vi

|p′ik(0)|

for all γ ∈ [0, 1]n.
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Define T : [0, 1]n 7→ [0, 1]n by T (γ) , (T1(γ), T2(γ), . . . , Tn(γ)) where, for
each i ∈ C,

Ti(γ) , min{1,max{0, γi + σi∇iUi(γ)}}

(i.e., projected gradient ascent), where

1

σi

≥ 2|Vi|max
k∈Vi

|p′ik(0)|

for all γ ∈ [0, 1]n. If

min
j∈Vi

|p′ij (|Cj |) | >

(

|Vi| −
1

2

)

max
j∈Vi

|cij |, for all i ∈ C,

then the totally asynchronous distributed iteration (TADI) sequence {γ(t)}
generated with mapping T and the outdated estimate sequence {γi(t)} for all
i ∈ C each converge to the unique Nash equilibrium of the cooperation game.
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Define T : [0, 1]n 7→ [0, 1]n by T (γ) , (T1(γ), T2(γ), . . . , Tn(γ)) where, for
each i ∈ C,

Ti(γ) , min{1,max{0, γi + σi∇iUi(γ)}}

(i.e., projected gradient ascent), where

1

σi

≥ 2|Vi|max
k∈Vi

|p′ik(0)|

for all γ ∈ [0, 1]n. If (∝ Hamilton’s rule on networks)

Benefit
︷ ︸︸ ︷

min
j∈Vi

|p′ij (|Cj |) | >

Relatedness
︷ ︸︸ ︷
(

|Vi| −
1

2

) Cost
︷ ︸︸ ︷

max
j∈Vi

|cij |, for all i ∈ C,

then the totally asynchronous distributed iteration (TADI) sequence {γ(t)}
generated with mapping T and the outdated estimate sequence {γi(t)} for all
i ∈ C each converge to the unique Nash equilibrium of the cooperation game.
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Simulation of AAV patrol scenario

� Converges to predicted Nash equilibrium

� Increases in one encounter rate (e.g., λ2) cause equilibrium shift so

neighbors (e.g., 1 and 3) help more and agent (e.g., 2) helps less
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Simulation of AAV patrol scenario

� Converges to predicted Nash equilibrium

� Increases in one encounter rate (e.g., λ2) cause equilibrium shift so

neighbors (e.g., 1 and 3) help more and agent (e.g., 2) helps less

� Emergent cooperation due to cyclic feedback effects
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� Both biology and engineering are full of interesting complex systems

� Real-time implementations in one domain are intuitive and

cognitively simple behaviors in another

� Homomorphisms are not always obvious and should not be

forced

� Unifying principles are more valuable than mimicry

� Catalyze interdisciplinary collaboration

� Inject new ideas

� Provides new avenues for careers after graduate school!
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(bringing engineers and animals together)

� Thank you!

� Helpful People: Kevin Passino, Tom Waite, Ian Hamilton

� Funding Sources:

� Questions?
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