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Pareto minimization of costs subject to conservation simplex
Solution (from KKT) is an “upside-down” IFD:

dC;(P;)

1P =\ Vi€ {1, 2,..., n} (and truncate appropriately)
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Equalization of marginal cost matches IFD equalization of suitability.

[ Conical cost combination with simplex constraint set has simple
solution in dual space (i.e., solve for A).']
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Closing remarks

Pareto maximization of gain(?) subject to conservation simplex.

Right-side-up IFD:

dZCZ'

=\ Vie{l,2,...,n} (and truncate appropriately)

Distribute x; to equalize marginal gain.

[ Conical cost combination with simplex constraint set has simple
solution in dual space (i.e., solve for A).']
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T : maximize E Gi(t;) subject to E t; =T
Cooperative task . - -
processing . 1=1 =1

Closing remarks

Maximization of distributed gain subject to limited time inside/patch.

Right-side-up IFD:

dG;(t;)
dt;

=\ Vie{l,2,...,n} (and truncate appropriately)

Distribute ¢; to equalize marginal gain.

[ Conical cost combination with simplex constraint set has simple
solution in dual space (i.e., solve for A).']
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Sharpe (Nobel prize, Economics, 1990) ratio:

E(R) — Ry
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Exactly the Z-score ranking method of risk-sensitive foraging theory.

MPT (then) — PMPT (now) (stochastic dominance, Bawa 1982)
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B IFD (Fretwell 1972; Fretwell and Lucas 1969) <— Optimal power
dispatch (Bergen and Vittal 2000)

B Risk-sensitive foraging (Stephens and Charnov 1982; Stephens and
Krebs 1986) <—> Sharpe ratio/MPT (Sharpe 1966, 1994)

M lain Couzin's (2000+) <= Bertsekas and Tsitsiklis (1997—) (e.q.,
mysterious torus shapes; symmetry; symmetry breaking)
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Engineering Sereridipity

Nice homomorphism between solitary foragers and
autonomous vehicles (Andrews et al. 2004; Charnov
1973; Quijano et al. 2006; Stephens and Krebs 1986)

[J Fitness surrogate (e.g., calories, target value)
[J Diverse collection of targets

m Opportunity cost: some should be ignored

[1 Rate maximization for long runs

[1 Target/task choice <—> prey model
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Nice homomorphism between solitary foragers and
autonomous vehicles (Andrews et al. 2004; Charnov
1973; Quijano et al. 2006; Stephens and Krebs 1986)

BoWhite quail

B Vehicle speed choice is very similar to cryptic prey (Gendron and
problem described by Gendron and Staddon (1983) Stacdon 1983)

[1 Ceteris paribus, encounter rate increases with
search speed

[1 Search cost increases with search speed
[1 Detection mistakes may vary with speed
[1 Non-trivial speed—prey choice coupling

m Prey — speed — rate — prey
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N b .V
Bobwhite qualil

B Vehicle speed choice is very similar to cryptic prey (Gendron and
problem described by Gendron and Staddon (1983) Stacdon 1983)

B To match bobwhite quail observations, Gendron and Staddon
choose detection function P%(u) 2 (1 — (u/tmax) ™)/ 5 that
maps search speed u &€ [0, umax] to detection probability Pz-d for
tasks of type ¢ with conspicuousness K; € [0, c0).

[1 No analytical tractability
[0 Chose n = 2 for simulation (1983)

[] Pz-d IS strange at bounds (1 and 0)
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B Autonomous vehicle faces n-way merged Poisson process

[0 A;: encounter rate for task of type 1

0 (g;,t;): average (value, time) for processing task of type ¢

[0 p;: probability that task of type 7 is processed (decision)

[0 ¢°: cost per-unit-time of searching

B Vehicle goes through cycles of searching and processing

[]
[]
[]

(: average per-encounter gain

T
g

. average per-encounter search and processing time

(t): Markov renewal-reward process for accumulated gain
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Closing remarks B Long runtime =——> maximize rate of return

. —C+ ) AiDigi
6(t) _ G D i
T

aslim —= = = = R(p)

n
oo 1+ Apits
1=1

As expected, type-ll functional response (Holling’s disk equation
without any sandpaper disks).

Engineering Sereridipity Successes and New Investigations



On-line prey—speed choice for

(Pavlic 2007; Pavlic and Passino

Introduction

B Autonomous vehicle faces n-way merged Poisson process
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[0 A;: encounter rate for task of type 1

Speed choice (—)

mpuisiveniess and 3 ] (gi, ti): average (value, time) for processing task of type ¢

operant conditioning
(<)

[0 p;: probability that task of type 7 is processed (decision)

Long patch residence ¢
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[0 ¢°: cost per-unit-time of searching
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op; n 2
(1 + > )\ipiti>

1=1
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B Autonomous vehicle faces n-way merged Poisson process

[0 A;: encounter rate for task of type 1
0 (g;,t;): average (value, time) for processing task of type ¢
[0 p;: probability that task of type 7 is processed (decision)

[0 ¢°: cost per-unit-time of searching

B So KKT reveals optimization is purely O(2") combinatorial

)\Z-gz- (1 + Zl )\j])jfj) — )\iti (—CS —+ Zl )\jpjgj)
J= J=
OR(p) Ji ji

op; n 2
(1 + > )\ipiti>

1=1

So-called zero—one rule because p} € {0, 1}
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[0 A;: encounter rate for task of type 1
0 (g;,t;): average (value, time) for processing task of type ¢
[0 p;: probability that task of type 7 is processed (decision)

[0 ¢°: cost per-unit-time of searching

B So KKT reveals optimization is purely O(2") combinatorial

)\Z-gz- (1 + Z )\j])jfj) — )\itz’ (—CS —+ Z )\jpjgj)

g=1

OR(p) j#i jAi

op;

So-called zero—one rule because pf € {0, 1}

Successes and New Investigations



On-line prey—speed choice for

Introduction

Solitary foraging: from
ecology to engineering ¢
and back

Speed choice (—)

Impulsiveness and
operant conditioning

(+) :
Long patch residence ¢
times (<)

Cooperative task
processing

Closing remarks

Engineering Sereridipity

(Pavlic 2007; Pavlic and Passino

B Autonomous vehicle faces n-way merged Poisson process

[0 A;: encounter rate for task of type 1
0 (g;,t;): average (value, time) for processing task of type ¢
[0 p;: probability that task of type 7 is processed (decision)

[0 ¢°: cost per-unit-time of searching

B Classical prey ranking refines search from O(2") to O(n + 1)

Optimal rate R(p™*)

Processed types (pjf =1) k™ Ignored types (p;f =0)
T Jr 2 Mg g B In
t_>t_>"'>tk> e >tk+1>...>t—”
1 2 k* k*+1 n

1+ > At
1=1

where optimal pf = [i < k*] with k* € {0,1,...,n}
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B Autonomous vehicle faces n-way merged Poisson process

[0 A;: encounter rate for task of type 1
0 (g;,t;): average (value, time) for processing task of type ¢
[0 p;: probability that task of type 7 is processed (decision)

[0 ¢°: cost per-unit-time of searching

B Classical prey ranking does not depend on A (i.e., speed)

Optimal rate R(p™*)

Processed types (pjf =1) k™ Ignored types (p;f =0)
T Jr 2 Mg g B In
t_>t_>"'>tk> e >tk+1>...>t—”
1 2 k* k*+1 n

1+ > At
1=1

where optimal pf = [i < k*] with k* € {0,1,...,n}
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B Speed U € [Unin, Umax] C [0, 00) influences each encounter rate
)\z‘ (u) = uDzP,Ld(u)
where D; is the linear density in the population

B Detection function is linear interpolation of probability bounds
Pid(u)

PY(u) = Pfu+ P?

1

0 | : U

Umin Umax

B Search costis also assumed to be affine function

c’(u) = cyu+c,
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Speed u € [Umin, Umax] C [0, 00) influences each encounter rate
)\z‘ (u) = uDszd(u)
where D; is the linear density in the population

B Detection function is linear interpolation of probability bounds
Pid(u)

PY(u) = Pfu+ P?

1

0 | : U

Umin Umax

N ‘ [ Processing costs can be modeled in a similar way |] I

ci(u) = ciu+ ¢
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Speed u € [Umin, Umax] C [0, 00) influences each encounter rate
)\z‘ (u) = uDszd(u)
where D; is the linear density in the population

B Detection function is linear interpolation of probability bounds
Pid(u)

PY(u) = Pfu+ P?

1

0 | : U

Umin Umax

N ‘ [ Processing costs can be modeled in a similar way |] I

c’(u) = cyu+c,

C [...butnot here. ] DY
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B After regrouping, new objective function

B Gg(p)u2 + G4 (p)u + Go(q)
Rip,u) = To(p)u? + Ti(p)u + 1

where coefficients

Go(p) 2 Y Dipigi P! “
2 1) 2 S pits Dy
n 1=1
Gi(p) £ Y DipiPlg; —c; -
; Ti(p) = ZpitiDiPia
S 7=1
GO(p) = —Cq

are constant with respect to u (i.e., biquadratic ratio)
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B After regrouping, new objective function

B Gg(p)u2 + G4 (p)u + Go(q)
Rip,u) = To(p)u? + Ti(p)u + 1

where coefficients

Go(p) 2 Y Dipigi P! “
2 1) 2 S pits Dy
n 1=1
Gi(p) £ Y DipiPlg; —c; -
; Ti(p) = ZpitiDiPia
S 7=1
GO(p) = —Cq

are constant with respect to u (i.e., biquadratic ratio)

B Find optimal ©™* for each p* candidate (n + 1 total)
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B Because biquadratic objective, for each p* candidate,

8R(u) (GQTl — Gng)u2 + 2(G2 — G()TQ)U -+ (Gl — G()Tl)

ou 2
(TQ'LLZ + Tiu + 1)

By KKT, if quadratic numerator root ©* € [tmin, Umax|, then u™* is
optimal speed; otherwise, optimal speed u* € {umin, umax} based
on sign of numerator
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B Because biquadratic objective, for each p* candidate,

OR(u)
ou

(GQTl — Gng)u2 + 2(G2 — G()TQ)U -+ (Gl — G()Tl)

2
(TQ'LLZ + Tiu + 1)

By KKT, if quadratic numerator root ©* € [tmin, Umax|, then u™* is
optimal speed; otherwise, optimal speed u* € {umin, umax} based
on sign of numerator

Implement O(n + 1) algorithm on-line if D; density estimates
available (Dubin’s car AAV simulations with speed filtering, Pavlic
and Passino 2009)
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B Because biquadratic objective, for each p* candidate,

8R(u) (GQTl — Gng)u2 + 2(G2 — G()TQ)U -+ (Gl — G()Tl)

ou 2
(TQ'LLZ + Tiu + 1)

By KKT, if quadratic numerator root ©* € [tmin, Umax|, then u™* is
optimal speed; otherwise, optimal speed u* € {umin, umax} based
on sign of numerator

Implement O(n + 1) algorithm on-line if D; density estimates
available (Dubin’s car AAV simulations with speed filtering, Pavlic
and Passino 2009)

B Non-trivial to guarantee convergence of density estimates on-line

[1 Estimation process — Mtype-lll functional response
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O R

Laboratory impulsiveness

epeat mutually exclusive binary-choice trials (at low weight)

)

Estimation, impulsiveness, and the operant labora

starvation, animals are trained to use a Skinner box
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at can be inferred about Skinner box results?

Cooperative task
processing

[0 Usually assume simultaneous encounters occur with
probability zero (Poisson assumption)

Closing remarks

[0 Mutually exclusive choices when prey is immobile?
[0 Patch impulsiveness vanishes (Stephens et al. 2004)

(] Attention (Monterosso and Ainslie 1999; Siegel and Rachlin 1995)
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Estimation of p
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Estimation, impulsiveness, and the operant labora

-type densities only necessary for speed regulation
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Estimation of per-type densities only necessary for speed regulation

Graphical description of optimal prey choice:

Processing gain

| For type i: @ or Q @ (processing time t;, gain g(t;)) I

v

(t3, 93)
(t1,91) ..'.
[ J .
.... //
(t2,92) %
o
.: ." _". V
.« . . e .
« e . e e
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/// .‘..O(tg,,gs)
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Processing time
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Graphical description of optimal prey choice:

Processing gain

Process encounter k when g; k) /tiy > G(t(k))/t(k)

| For type i: @ or Q @ (processing time t;, gain g(t;)) I

v

(t3,93)
(t1,91) _.'.
[ J .
.'.. //
(t2,92) %
o
.: ." _". V
.« . . e .
« e . e e
LI
RN
..,'."// et ‘.-O(t5795)
;__/:./' ...........
NX) >

Processing time

G(t): Accumulated net gain

)

Estimation, impulsiveness, and the operant laboratc

t: Total search and processing time
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Graphical description of optimal prey choice:

| For type i: @ or Q @ (processing time t;, gain g(t;)) I

v

(t3,93)
[ J

)

Estimation, impulsiveness, and the operant labora

(t1,91)
[ J

times (<)

Cooperative task
processing

Closing remarks

Accumulated net gain

Processing gain
oz
. @
)
. < ‘. .
. N
. \

Time

Y

Processing time

Process encounter k when g; k) /tiy > G(t(k))/t(k)

B Rule (even with mistakes) is optimal facing Poisson encounters (i.e.,
simultaneous w.p.0)
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(Pavlic and Passino 2010c)

[0 Digestive rate constraints (b;: prey bulk) (Hirakawa 1995):

n pik =1
> Aipib;
Zzln S B KKT

1+ Z Aipiti pZ*—l =1

=L i € [0,1]

Partial Preferences
(rank by g; /b;)

Digression
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(Pavlic and Passino 2010c)
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[1 Ecological-physiological hybrid method (Whelan and Brown 2005):

9i
t; + t

7

Asymptotic gut constraint <>  Rank by

Digression
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(Pavlic and Passino 2010c)
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Accumulated net gain

G(t): Accumulated net gain

Time

t: Total search and processing time

Process encounter k when g; k) /ti) > G(t(k))/t(k)

B Attention: simultaneous encounter (w.p.0) =— low time firs
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Process encounter k when g; k) /ti) > G(t(k))/t(k)

B Attention: simultaneous encounter (w.p.1) = low time firs
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G(t): Accumulated net gain

t: Total search and processing time

Process encounter k when g; k) /ti) > G(t(k))/t(k)
B Attention: simultaneous encounter (w.p.1) = either first

[0 Bifurcation; lucky runs accumulate high initial estima
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Accumulated net gain

G(t): Accumulated net gain

t: Total search and processing time

Process encounter k when g; k) /ti) > G(t(k))/t(k)
B Attention: simultaneous encounter (w.p.1) = low time firs

[0 Rescue optimality with early ad libitum feeding
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times (<—)
g1(t1) A
Cooperative tas R(tl) — 1— where {CL < b < C} — gl (O) < O
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try costs, searching is a less desirable task

B May explain overstaying as well (Nonacs 2001)
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processi\r\m : (1 e.d., Global utility functions to maximize
Background E . . .
Task-procelsing : [1 e.g., Projections onto non-separable spaces (i.e., not
network .

Cartesian products)
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Asynchronous [1 Challenges to fast and cheap implementation
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Results
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Cooperation for distributed decentralized netw

B Cooperative control usually involves coordination of agents%

(possibly ad hoc) networks

B Nash (i.e., competitive) equilibria are solutions to separable

variational inequality problems

[J /Amenable to parallel solvers

(1 Used by communication theorists on networks for/congestion
control (Altman et al. 2005a,b; Buttyan and Hubaux 2003;

Shakkottai et al. 2006)

(1 Strong connection to biological (and sociological) models of

emergent cooperation in nature
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Asynchronous .
convergence to : . . .
cooperation : (1 Typically used in control to model noise or enemy movements
ST 5 (e.g., worst-case scenarios) or actions of humans in the system

Closing remarks

[1 Task conservation is a challenge to communication-like
application of Nash methods to task flow control
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processin : B Nash (i.e., competitive) equilibria are solutions to separable
Backgroud variational inequality problems

Task-processing °

network .

Cooperation ghme & B Used in control to model unknown/unknowable

Asynchronous :

convergence to : . . . .
o : B Existing task-processing networks (TPN) (Cruz 1991, Perkins and
ST 5 Kumar 1989) focus on robustness, not optimality:

Closing remarks

(1 Flexible manufacturing system, network components
bounded queues/burstiness

(1 Behaviors are static (i.e., no feedback)
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(possibly ad hoc) networks

B Nash (i.e., competitive) equilibria are solutions to separable

variational inequality problems

B Used in control to model unknown/unknowable

Cooperative control usually involves coordination of agentssw

B Existing task-processing networks (TPN) (Cruz 1991; Perkins and
Kumar 1989) focus on robustness, not optimality:

B So here, elements merged from communication, TPN, and possible
analogous systems in nature (e.g., Cooperative breeding, Hamilton
and Taborsky 2005)

to design system so that Nash equilibrium has
characteristics that are globally favorable
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A task-processing network is a directed graph:

A C N: Set of task-processing agents
P C {(i,j) € A? : i # j}: Directed arcs connecting distinct agents
A

V; ={j € A:(j,i) € P}: Setof conveyors for each 7 € A

Ci

{j € A:(i,7) € P}: Setof cooperators foreach i € A

V2{jeA: C; # D}: Setof all conveyors

C2{ie A:V; # 0}: Setofall cooperators

Task flows at each agent:

Y; C N: Possibly empty set of task types that arrive at conveyor 7 € A

A;{-’ € R~ o: Encounter rate of type-k tasks at agent j € A (e.g., Poisson encounters)
W;? € [O, 1]: Probability that conveyor j € A advertises an incoming k-type task to its connected cooperators Cj

Yi € [O, 1]: Probability that cooperator 7 € A volunteers for advertised task from one of its connected conveyors V;
(collected in ~y)
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TPN examples

(Pavlic and Passino 2010a)

Y1 ={1,2} Yo ={1,2,3}
1 2 1 2
Input streams (k € Y; C {1,2,3}): H B H B ﬁ N
1 \ 1 D i 7
1 1 I A 1 /
k 1y 1 )2 1%V \2 7,3 Task
: Rate )\] Al \ 1 AT A2 \‘ )‘_2 ’l Ay > arrivals
1 v
A / W,
Conveyors (7 € V = {1,2}): )
k
Send request @ ; Nodes and
> processing
Accept request @ ~; requests
Cooperators (i € C = {3,4,5}): Y,

Flexible manufacturing system (FMS)
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TPN examples

(Pavlic and Passino 2010a)

Input streams (k € Y; C {1,2,3}):

Rate )\;?

\J
Conveyors (7 € V = {1,2}):

Send request @ Wf

Accept request @ ~;

Cooperators (i € C = {3,4,5}):

Engineering Serendipity

Cooperative breeders?

y2 = {]-) 25 3}
1 2 3
H B B )
Vo)
1
Task
A\ A% ,’l A3 > alf;sivals
_J
)
Nodes and
> processing
requests
S
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TPN examples
(Pavlic and Passino 2010a)

A2 A3
L' ~

i ) K

C=V=1{1,23}
Ci=Vi={1,23}-{i}
Yi ={j}

AAV patrol scenario AAV TPN
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convergence to
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Results

Closing remarks

ngineering Sereridipity

B To simplify presentation of combinolunteering analysis,

Cooperation game ‘
Metrics of volunteering

introduce SOBP and SOMS.

O Z: finite index set
0 Q = {v; }iez: indexed family with v; € [0,1] for eachi €

Forg,h € NandI' C Z,

SOBP,(T) é%ﬁ S ((H%) ( 1] (1—%)>>

ccr \ \iec ker—C
ICl=¢
1N 1
SOMS,(T) = Z(—l)gm > (H %‘)
(=0 ccr \iee
Cl=t

Several useful relationships between SOBP and SOMS.
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Cooperation game ‘
Metrics of volunteering

B To simplify presentation of combinolunteering analysis,
introduce SOBP and SOMS. ForI" C A,

SOBP, ({i, k, £} — {i})
1

1 1
= (1 —y)(1 =) + 5%:(1 — Ye) + 57@(1 Vi) + 5%7@

(i.e., sum of binomial products)

B For conveyor j € V and cooperator i € C; = {1, k, {},
SOBP; ({7, k, ¢} — {i}) is probability that ¢ is chosen to process
an advertised task from 5 € )/; (given that it volunteered)
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~

Cooperation game ‘
Metrics of volunteering

B To simplify presentation of combinolunteering analysis,
introduce SOBP and SOMS. ForI" C A,

SOBP, ({i, k, £} — {i})
1

1 1
= (1 —y)(1 =) + 5%:(1 — Ye) + 57@(1 Vi) + §’7k’7€

(i.e., sum of binomial products)

B For conveyor j € V and cooperator i € C; = {1, k, {},
SOBP; ({7, k, ¢} — {i}) is probability that ¢ is chosen to process
an advertised task from 5 € )/; (given that it volunteered)

B SOMS gives curvature information about SOBP

B Properties of SOMS and SOBP provide bounds for convergence
analysis (i.e., Lyapunov/non-deterministic set stability)
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CooperatiOn game

Agent utility function — rate of gain

For ¢ € C, the rate of gain

Conveyor part — constant with respect to -y ;
. Pr (4 awarded task from j | % volunteers)

Ui (7) = b; + (1— I (1—%'))7’1 +7 > ( — SOBP1(C; — {i})e45)
JEC; JjeV;
Pr (Volunteer from C;T Advertisement from 7)) Cooperator part e
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Cooperatib_n game

Agent utility function — rate of gain

For ¢ € C, the rate of gain

Conveyor part — constant with respect to -y ;

o\

U; (7) é;z’ + (1 - jgi(l - Wj))ﬁ'

A o

NV
Pr (Volunteer from C; | Advertisement from 4 )

where

are the costs and benefits of local process-
ingon¢ € Y

Engineering Serendipity

\—l-%' Z (

A

JEV;

Pr (4 awarded task from j | % volunteers)

— ’SOBpl(Ej — {i})‘ég)

Cooperator part
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Agent utility function — rate of gain

For ¢ € C, the rate of gain

Conveyor part — constant with respect to -y ;

o\

U; (7) é;z’ + (1 - jgi(l - Wj))ﬁ'

A o

NV
Pr (Volunteer from C; | Advertisement from 4 )

where

are the costs and benefits of local process-
ingon¢ € Y

Engineering Serendipity

\—l-%' Z (

Pr (4 awarded task from j | % volunteers)

— ’SOBpl(Ej — {i})‘ég)

JEV;

A

Cooperator part

and

are the costs and benefits to 7 € C for vol-
unteering for tasks exported from 7 &
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Cooperation game

Agent utility function — rate of\'\gain

For ¢ € C, the rate of gain

Conveyor part — constant with respect to -y ;

P . Pr (4 awarded task from j | % volunteers)
A o\
Ui () 2 b + (1 “Jla —w) CQupi@) v S (pis(Qy) — SOBPIC, — (Pesy)
Jjec; JjeV;
Pr(Volunteer from C ;T Advertisement from 7)) Cooperator part — 'y,;;nd Q 4 vary with ~;

where and
b Ak (b - k) iy 30 Niwkel,
key; key;
r; = Z Afﬂ'f (Tf - (b? - cf)) pij(Qj ) = Z Ak kqupf(Qﬂ)
kEY; keY;
pi(Qi) 2 > Anipl(Q) : .
kEY; are the costs and benefits to 7 € C for vol-

- nteering for tasks exported from
are the costs and benefits of local process- unteering for tasks exported from j ¢

ingon¢ € Y

Fictitious payment functions added as stabilizing controls ((); = Zjecq; Y5)
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Cooperation game

Agent utility function — rate of\gain

For ¢ € C, the rate of gain

Conveyor part — constant with respect to -y ;

P . Pr (4 awarded task from j | % volunteers)
A o\
Ui () 2 b + (1 “Jla —w) CQupi@) v S (pis(Qy) — SOBPIC, — (Pesy)
Jjec; JjeV;
Pr(Volunteer from C ;T Advertisement from 7)) Cooperator part — 'y,;;nd Q 4 vary with ~;

where and
b Ak (b - k) iy 30 Niwkel,
key; key;
r; = Z Afﬂ'f (Tf - (b? - cf)) pij(Qj ) = Z Ak kqupf(Qﬂ)
kEY; keY;
pi(Qi) 2 > Anipl(Q) : .
kEY; are the costs and benefits to 7 € C for vol-

are the costs and benefits of local process- unteering for tasks exported from j €

ingon¢ € Y

Fictitious payment functions added as stabilizing controls (();

A
— ZjECi V5)

Cournot oligopolies on a graph
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convergence to
cooperation

Results
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Engineering Sereridipity

B Natural choice for distributed variational inequality is local gradient
ascent

B Asynchronous system is governed by difference inclusion ' (not
difference equation)

B For set stability, sufficient to show synchronous system is a
contraction mapping

[J Also gives existence and uniqueness of Nash equilibrium

B Because v € |0, 1]|C| comes from product topology of intervals,
must use block maximum norm (||v||ee = max;cc{|vi|}

B Procedure leads to constraints on payment functions and topology
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ooy #ﬁi&i;ﬁ;‘; : Assume that (Payment and topological constraints):

and back

Coopera’-livetask 1. Forallz € Cand j € V;, p;; is a stabilizing payment function

processing

Background

Task-prdcessing ; H For k & N, p/(Q) é dp(Q)/dQ < O for all Q - [0, k]

network

B Fork €N, p"(Q) 2 d%p(Q)/dQ? > Oforall Q € [0, k]

Asynchronous

converg(te_ ce to ; B For k & N, ’}/p//(Q) S —p/(Q) for all Q & [/}/, ]f — (1 — /}/)]
: 5 with v € [0, 1]

Results

Closing remarks
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Payment and topological

Introduction

Solitary faraging: from
ecology to engineering

and back

2

Cooperative task
processing

Background

Sample stabilizing payment (inverse demand) functions

Task-pracessing
network

Cooperioncame 3 Agsume that (Payment and topological constraints):

Asynchronous
convergence to
cooperation

1. Forallt € Cand j € V;, p;; is a stabilizing payment function

Results

Closing rematks 2. Forallj €V, |C;| < 3 (i.e., no conveyor can have more than 3
' outgoing links to cooperators)

3. For cooperatorz € C and 5 € V;, if j is a 3-conveyor (i.e.,
|C;| = 3), then there must be some conveyor k € V; thatis a
2-conveyor
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Asynchronous convergence to Nash equilibrium

Totally asynchronous algorithm

~ Define T : [0,1]" —{0,1]" by T(v) £ (T1(7), To(7), ..., T,.(7)) where, for
Introduction § each 1 € C’
Solitary foraging: from E T’L <f}/> é min{l, maX{O, Vi -+ O-ZVZU@< }}

ecology to engineering ¢
and back

(i.e., projected gradient ascent), where

Cooperative task
processing

: 1
Background . ' /
Task-processing o; 2 2|V’L| géa]i( |pzk (O)|
network .

Cooperation game

forall v € [0, 1]™. If

Asynchronous

convergence to

cooperation E . , 1 -
Results ?61112 |pij (|C]|) | > <|V@| — 5) gré%}}zi |Cz‘j|, forallz € C,

Closing remarks

then the totally asynchronous distributed iteration (TADI) sequence {~(t)}
generated with mapping 7" and the outdated estimate sequence {~*(¢)} for all
1 € C each converge to the unique Nash equilibrium of the cooperation game.
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Totally asynchronous algorithm

~ DefineT : [0,1]" —-10,1]" by T'(y) = (T1(7), Ta (%), .\ .
Introduction § each Z c C’

o oy o Ti(7) £ min{1, max{0,7 + 0; VUi
and back

, T, (7)) where, for

1

(i.e., projected gradient ascent), where

Cooperative task
processing

: 1
Background . ' /
Task-processing : _z 2 2|V’L| gé%)}f |pzk (O)|
network

Cooperation game

for/all v € [0, 1]™. If (o0c Hamilton’s rule on networks)

Asynchronous

convergence to

cooperation E Relatedness

Results : B(Et’ljfit r -\~ ] ~ Cﬁ)j’[
° N\

Closing remarks - mln |p’5.7 (‘C |) | > (|VZ‘ - 5) mz%}x |CZ.7‘ forall 2 € C,
. €

then the totally asynchronous distributed iteration (TADI)/sequence {~(t)}
generated with mapping 7" and the outdated estimate sequence {~*(¢)} for all
1 € C each converge to the unique Nash equilibrium of the cooperation game.
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Simulation of AAV patrol scenario

B Converges to predicted Nash equilibrium

B Increases in one encounter rate (e.g., o) cause equilibrium shift so
neighbors (e.g., 1 and 3) help more and agent (e.g., 2) helps less

B Emergent cooperation due to cyclic feedback effects
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and back [J Real-time implementations in one domain are intuitive and
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processing : cognitively simple behaviors in another
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B Unifying principles are more valuable than mimicry

[1 Catalyze interdisciplinary collaboration

[] Inject new ideas

[J Provides new avenues for careers after graduate school!
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B Helpful People: Kevin Passino, Tom Waite, lan Hamilton
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