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Agents are compelled to optimize a global good
Designs stifle emergent behavior

Complex designs can have unrealistic
communication/shared information requirements
Looks nothing like the cooperation of interest to
biologists and sociologists
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c/b < r (r: relatedness—function of distance on
family tree)
Trivers suggested that future reciprocity can be a
surrogate for relatedness

Nowak et al. show that cooperation emerges via
birth—death processes on networks

Nowak et al. also show that in all cases, relatednes
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Realm of non-cooperative/competitive game theory

¢

Techniques typically used to model noise or
parameter variations (i.e., competing player whose
interests are not necessarily aligned)

Methods also used to model behaviors of human
agents interacting with the system

Ad hoc multi-hop networks (Altman et al., Hubaux
et al.) choose to forward packets at cost to local
bandwidth /power, but packets are not tasks
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Input streams (k € V; C {1,2,3}): ! ! ! ! F
1
: Rate \¥ AL ‘\ ,' A2 AL \ /\I2 / A3 Task
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Figure 1: Flexible manufacturing system (FMS)
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(a) AAV patrol scenario (b) AAV TPN

Figure 2: AAV patrol scenario
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Agent Utility Function

Conveyor part — constant with respect to v,

p /N N Pr (¢ awarded task from j|< volunteers)
A 7 -\ . N
Ui(y) = b; + (1 - ] a- 7j)>7"z‘ — Qipi(Q:) +vi > (pij(Q;) —SOBP1(C; — {i})cij)
jEC,L' JEV;
Pr(Volunteer from CiTAdvertisement from 1) Cooperator part — 'yz-vand Qj vary with ~;
where and
A k k k A kE_k k
key; ked;
A k _k k k k A kE _k k k
ri £ ) AT, (Tz' - (bi _Ci))7 pij(Qz) = D> Aimia;;p; (Q)).
key; ked;
A kK _k k
pi(Qi) = Z A TP, (Qi),
key; are the costs and benefits to ¢ € C for volunteering

for tasks exported from 5 € V;.

are the costs and benefits of local processing on
1€V,
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B Pills" stabilize problematic areas by focussing
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Figure 5: Simulation of AAV patrol scenario.
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Figure 5: Simulation of AAV patrol scenario.

Converges to predicted Nash equilibrium.
Increases in one encounter rate (e.g., \2) cause
equilibrium shift so neighbors (e.g., 1 and 3) help more

and agent (e.g., 2) helps less.
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