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Doctoral Thesis Proposal: Cooperative Task Processing Theodore P. Pavlic

Abstract

This work describes the dynamical behavior of agents that can each share the task-processing burden of

their immediate neighbors. The work is influenced by studies of the evolution of cooperation and extends ex-

isting work in the design of resource allocation strategies on cooperative agents. A framework for shared task

processing on a network is presented, and theoretical results show sufficient conditions on distributed and

asynchronous agent behaviors that guarantee an optimal allocation of task-processing resources on the net-

work. The framework is shown to be applicable for autonomous air vehicles (AAV), mobile software agents,

and smart power grids, and simulation results are given for an AAV case. An outline for future research

directions, including expanding the framework for processing time constraints and reciprocity mechanisms,

is also presented.

Keywords: distributed multi-agent control, game theory, cooperation, Nash equilibria, mobile agents, parallel

asynchronous computation
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1 INTRODUCTION

1 Introduction

Here, motivations for a task-processing network of selfish cooperative agents are discussed.

1.1 Fundamentals of cooperation

Within a biological organism, specialized organs cooperate with each other because they are mu-
tually dependent. Each organ performs certain vital functions for the others because they perform
vital functions for it. Likewise, related individuals in a family perform costly acts for each other
in order to ensure the longevity of the family. However, cooperation among distantly related in-
dividuals may not be likely, and cooperation among unrelated individuals is apparently irrational.
As shown by Hamilton [25], a cooperative act between two related individuals should be taken if
the cost-to-benefit ratio of the act is less than their relatedness. However, this simple rule does not
explain altruistic acts between two unrelated individuals.

Trivers [47] suggests that benefits via reciprocity can be a surrogate for benefits via relatedness.
Hence, cooperation among unrelated individuals who are certain to interact in the future (e.g.,
altruism between two friends) may be explained by a pattern of reciprocity; selfless acts in the
past may actually be an investment in reciprocal acts in the future. Motivated by this idea,
Axelrod [5] develops precise behavioral protocols and shows in computer simulation that stable
patterns of cooperative reciprocity are possible. Additionally, several studies [e.g., 14, 16, 17, 35]
have documented the existence of these reciprocity protocols in nature. Modern theoretical work
studies how unrelated individuals can be similarly coupled if they are forced to interact along
vertices of a graph [31, 38, 39]. Nowak [37] summarizes these results and shows that sufficient
conditions for cooperation in every case are described by a generalization of Hamilton’s rule. In
particular, an altruistic act is favorable when the cost-to-benefit ratio of the act is less than a
measure of the likelihood that the two individuals will interact again. In this work, it is shown
that this general rule extends to engineering examples as well and can be used in the design of
distributed task-processing agents.

Engineered devices made up of specialized modular components are tantamount to technological
organisms. In particular, many of their components (e.g., pinion, capacitor, commutator ring) have
little value alone and thus depend upon the others for relevance. These designs are superior to
monolithic ones because they benefit from economies of scale. However, as in the case of biological
organisms, the components of an engineered organism lose all synergistic value at the instant one of
them ceases to function. So a good design effectively balances interdependence and independence.

One method of using the interdependence–independence tradeoff (IIT) in design is to build
networks of agents that have varying capabilities to process different types of tasks. Such networks
increase availability because the capability of the whole network to process each type of task is
robust to an isolated failure. Additionally, the networks can reduce the fatigue on each agent
by spreading out load that arrives non-uniformly. Moreover, production costs can be made small
because networks can be grown as necessary and will catalyze economies of scale as they grow.
Because policies governing the cooperative behavior of these distributed task-processing agents
may be complicated in general, it is necessary to develop theory defining how and when these
agents should cooperate.

1.2 Cooperative agent design

The interconnectedness of highly functional machines on the Internet introduces the potential for
leveraging the IIT. Developments in so-called grid computing are summarized by Buyya [11]. In
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2 COMPETITIVE EQUILIBRIA OF THE COOPERATION GAME

grid computing, system designers work under the assumption of heterogeneous agents with con-
flicting priorities. They borrow from the economic theories of mechanism design [34, ch. 23] and
implementation theory [41, ch. 10] to design mechanisms (e.g., brokering agents) and protocols that
either encourage resource sharing [e.g., 3, 4, 9, 12, 13, 23, 28, 44, 46, 48] or discourage exploita-
tion [e.g., 40, 43] among groups of agents. A survey of general distributed algorithmic mechanism
design (DAMD) is given by Feigenbaum and Shenker [18]. In DAMD, designers have no direct con-
trol over individual agents; instead, they control the structure of the interactions between agents
on the network. Effective DAMD forces all agents to voluntarily act to achieve some common
good. Furthermore, the asymmetric tensions between costs and benefits on each agent lead to an
emergent resource allocation that is favorable to the particular group of participating agents.

DAMD is appropriate when the designer has little control over which agents participate in the
network. However, in many distributed applications, engineers do have the ability to choose the
components that participate in the system. For example, a flexible manufacturing system (FMS)
may include several machines that can switch their current processing to one of several input task
flows and then produce output task flows for other machines in the system. The engineer can
control the specialized abilities, connections, and switching policy on each machine. Perkins and
Kumar [42] show that distributed scheduling policies exist that guarantee such systems will have
finite upper bounds on all buffers of tasks. Similarly, Cruz [15] shows how special network elements
can be combined to form queueing systems with output traffic flows that are guaranteed to have
finite burstiness constraints so long as the input flows also satisfy similar constraints. However,
neither method prescribes how to generate an optimal distributed control policy.

Because the optimal behavior may be unknown, inaccessible, or changing over time, agents may
need to use feedback to acquire and stabilize the optimal cooperative behavior. For example, a set
of autonomous air vehicles (AAV) deployed for distributed search, surveillance, or task processing
can coordinate their actions in order to converge on a holistically optimal behavior [19, 20, 22].
However, the coordination required between agents limits the independence of their distributed
policies. Additionally, the single optimality criteria being maximized ignores fatigue on individual
agents. For example, in a smart power grid [26], it may be desirable for distributed power stations
to share load; however, a single overloaded station should not result in a cascade of self-sacrificing
failures. Non-cooperative game theory is traditionally used in optimal control to design strategies
that are resilient to noise or parameter variations [7, 32]; however, it can also be used to design
simple selfish strategies that nonetheless assist overloaded neighbors. Several such techniques [e.g.,
1, 2, 10] exist for designing policies on nodes in ad hoc communication networks. In these cases,
nodes can forward packets from other nodes in order to reduce network congestion or improve
communication diversity, but nodes resist using all local resources for assisting other nodes. A
salient feature of these forwarding networks is that packets can be duplicated or dropped at any
time. Hence, they cannot apply to task-processing applications where tasks cannot be duplicated
and must each be assigned to a single agent for processing. In this work, selfish cooperation is
extended to these kinds of task-processing scenarios.

2 Competitive equilibria of the cooperation game

A task-processing network (TPN) models how connected agents can share the burden of processing
tasks. Tasks arrive at individual agents that can process them at some cost to themselves (e.g.,
due to limited resources or material fatigue). In order to reduce the local task-processing cost, an
agent can send requests to other nearby agents to process each task. At each request, those nearby
agents can choose ignore the request or volunteer to process the corresponding task. Definition 2.1

2



2 COMPETITIVE EQUILIBRIA OF THE COOPERATION GAME

Input streams (k ∈ Yj ⊆ {1, 2, 3}):
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Figure 2.1: Simple flexible manufacturing system example.

below describes a generic TPN precisely, and two example TPNs follow it. In Section 2.1, the
optimal ignore–accept mixed equilibrium is characterized, and in Section 2.2, a distributed and
totally asynchronous algorithm is provided that is guaranteed to converge to this equilibrium.

Definition 2.1. (Task-processing network) Take a finite set A ⊂ N of task-processing agents and
a set P ⊆ {(i, j) ∈ A2 : i 6= j} of directed arcs connecting distinct agents. For each agent i ∈ A,

Vi , {j ∈ A : (j, i) ∈ P} and Ci , {j ∈ A : (i, j) ∈ P}

are respectively the sets of conveyors and cooperators connected to agent i. Hence, V , {j ∈ A :
Cj 6= ∅} =

⋃

i∈A Vi and C , {i ∈ A : Vi 6= ∅} =
⋃

j∈A Cj are respectively the sets of all conveyors
and cooperators in the network. Assume that:

(i) For all i ∈ A, there exists a finite and possibly empty set Yi ⊂ N of task types such that for
all k ∈ Yi, tasks of type k arrive at agent i from an external source at average rate λk

i ∈ R>0.
Each external source of tasks is assumed to be independent of all other sources.

(ii) If j ∈ V , then there exist k ∈ Yj with πk
j 6= 0 where πk

j ∈ [0, 1] represents the probability that
conveyor j advertises an incoming k-type task to its connected cooperators Cj . If j ∈ V does
not advertise a task to its connected cooperators, the task will be processed by agent j.

(iii) If i ∈ C, then there is some γi ∈ [0, 1] that represents the probability that agent i will volunteer
for an advertised task from one of its connected conveyors Vi. Any task arriving at conveyor
j ∈ V that is advertised to cooperators Cj will be processed with uniform probability by exactly
one of the cooperators that volunteer for it; if no cooperators volunteer for the task, then it is
processed by conveyor j.

The graph G , (A,P), rates, and probabilities defined above characterize a task-processing network.

The simple TPN shown in Figure 2.1 represents a flexible manufacturing system (FMS) similar
to the systems described by Perkins and Kumar [42]. Tasks of types 1, 2, and 3 arrive according
to independent Poisson processes. Type-1 and type-2 tasks arrive at agent 1, and all three types of
tasks arrive at agent 2. For tasks of type k ∈ Y1 = {1, 2}, agent 1 advertises task arrivals to agents 3
and 4 with probability πk

1 . Likewise, agent 2 advertises arrivals of tasks of type k ∈ Y2 = {1, 2, 3}
to agents 4 and 5 with probability πk

2 . The system designer can choose different probabilities for
each task type based on the specialized abilities of each agent. Each agent i ∈ {3, 4, 5} volunteers
for an advertised task with probability γi independent of task type. Hence, in this TPN, agents 1
and 2 are conveyors and agents 3, 4, and 5 are cooperators.

In the FMS example, the set of conveyors and the set of cooperators are disjoint. In a gen-
eral TPN, an agent can be both a cooperator and a conveyor. For example, the fully-connected
TPN shown in Figure 2.2(b) models an autonomous air vehicle (AAV) patrol scenario shown in
Figure 2.2(a) that is similar to others in resource allocation literature [e.g., 19, 20, 22]. Each AAV

3
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Figure 2.2: A task-processing network formed by three autonomous air vehicles (AAV).

i ∈ {1, 2, 3} continuously searches its territory for tasks (e.g., targets) to process, and these tasks
are generated (i.e., found) at rate λi > 0. When a task is found, the AAV advertises the task to
both of its neighbors. If neither neighbor volunteers for processing, the AAV processes the task
itself. In this fully-connected topology, all agents are both cooperators and conveyors. Although
this network has several cycles, tasks do not move around the network — if a volunteering cooper-
ator is given a task for processing, it cannot generate a new task-processing request for that task;
it must process it itself.

Task-processing networks describe a broad range of applications. The AAV example above can
also serve as a model of a mobile software agent [29, 30, 33, 44, 49] that patrols for tasks to process
or any general group of networked processors [e.g., 21]. Additionally, by converting encounter rates
to energetic rates (i.e., power demand), TPNs can model the behavior of smart power grids [26]
made up of stations that request assistance from neighbors. That is, cooperator stations adjust
additional supply provided in response to demand requests from remote conveyor stations.

2.1 Optimality and the cooperation game

In a task-processing network, the probability (i.e., cooperation willingness) γi ∈ [0, 1] that cooper-
ator i ∈ C will volunteer for an advertised task from its connected conveyors must be chosen. It
is assumed that this choice must be done in a distributed fashion and it is impractical for agents
to coordinate in order to maximize some global utility. So each agent independently chooses a
cooperation policy that maximizes its individual utility (i.e., agents are selfish). Hence, optimality
is given in terms of the Nash equilibrium from Definition D.16 in Appendix D.

To inform each cooperator how to choose this policy, the network’s designer assigns cost and
rewards to agent operations in a common currency (e.g., proportional to dollars of net profit) that
is called points here. In particular,

• Agent i ∈ A receives (bki −cki ) net points for processing a locally generated task of type k ∈ Yi.

• Conveyor i ∈ V receives rki when a task of type k ∈ Yi from i is processed by a Ci cooperator.

• If cooperator j ∈ Ci volunteers and is selected to process a task of type k ∈ Yi from conveyor
i ∈ V , then cooperator j pays cost ckij to process that task.

However, these costs and benefits alone do not provide cooperators with any incentive to volunteer
to process conveyor tasks, and so an adaptive payment mechanism is required. Consider conveyor
j ∈ V and task type k ∈ Yj . If one or more cooperators in Cj volunteer frequently to process
requests from agent j, the other cooperators in the set should conserve resources by volunteering

4



2 COMPETITIVE EQUILIBRIA OF THE COOPERATION GAME

infrequently. To ensure this qualitative behavior, each cooperator i ∈ Cj receives volunteering
payment qkijp

k
j (Qj) from conveyor j ∈ Vi where:

• Qj ,
∑

k∈Cj
γk is the total quantity of cooperation willingness available to conveyor j.

• pkj (Qj) is a decreasing payment function that represents the price that conveyor j pays to its
connected cooperators each time they volunteer for a task of type k ∈ Yj .

• qkij ∈ R>0 is a value factor that scales payment pkj (Qj) from conveyor j into the currency of

cooperator i ∈ Cj (i.e., i perceives qkijp
k
j (Qj) value from the contribution pkj (Qj) from j).

So if any cooperator i ∈ Cj increases its cooperation willingness γi, it increases how often it receives
payment pkj (Qj) while also decreasing the payment itself. For each cooperator i ∈ Cj , these two
pressures encourage cooperation willingness (i.e., γi > 0) and resource conservation (i.e., γi < 1).

To maximize net points earned over a long run time, each agent chooses a policy that maximizes
its own expected rate of point accumulation. So for a given vector γ = [γc1 , γc2 , . . . , γc|C| ]

⊤ ∈ [0, 1]|C|

of cooperation policies (where unique ck ∈ C for all k ∈ {1, 2, . . . , |C|}), the utility (i.e., long-term
rate of point gain) returned to cooperator i ∈ C is

Ui(γ) , bi +

Pr(Volunteer from Ci|Advertisement from i)
︷ ︸︸ ︷
(

1−
∏

j∈Ci

(1− γj)

)

ri −Qipi(Qi)

︸ ︷︷ ︸

Conveyor part — constant with respect to γi

+ γi
∑

j∈Vi

(
pij(Qj)−

Pr(i awarded task from j|i volunteers)
︷ ︸︸ ︷

SOBP1(Cj − {i})cij
)

︸ ︷︷ ︸

Cooperator part — γi and Qj vary with γi

(2.1)

where

bi ,
∑

k∈Yi

λk
i

(

bki − cki

)

,

ri ,
∑

k∈Yi

λk
i π

k
i

(

rki −
(

bki − cki

))

,

pi(Qi) ,
∑

k∈Yi

λk
i π

k
i p

k
i (Qi),

︸ ︷︷ ︸

Costs and benefits of local processing on i ∈ V

and

cij ,
∑

k∈Yj

λk
jπ

k
j c

k
ij ,

pij(Qj) ,
∑

k∈Yj

λk
jπ

k
j q

k
ijp

k
j (Qj).

︸ ︷︷ ︸

Costs and benefits to i ∈ C
for volunteering for tasks from j ∈ Vi

(2.2)

The SOBP (i.e., the sum of binomial products) in Expression (2.1) is defined in Expression (C.3)
from Appendix C. In particular, SOBP1(Cj−{i}) is the probability that cooperator i will be chosen
to process an advertised task from conveyor j given that it volunteers for it. Hence, for j ∈ Vi,
the impact of cost rate cij decreases as other cooperators from Cj increase their own cooperation
willingness because the probability that agent i will be selected decreases. So for a conveyor
j ∈ V , its connected cooperators Cj form a Cournot oligopoly [36] (i.e., a set of independent agents
that provide a service for a demand-driven price) with a positive externality [6] (i.e., the cost of
processing decreases as more cooperators enter the market). The underbraced cooperator part of
the utility function shows that cooperator i must set its cooperation willingness γi (i.e., its quantity
of supplied cooperation) based on the summed returns from several such markets.

2.2 Distributed computation of the Nash equilibrium

Let n , |C|. Because there is no coordination between players, the n-dimensional play space
is the Cartesian product

∏

i∈C [0, 1] = [0, 1]n, and the collection of cooperation policies across

all cooperators is the vector γ , [γc1 , γc2 , . . . , γcn ]
⊤ ∈ [0, 1]n (where unique ck ∈ C for all k ∈

5



2 COMPETITIVE EQUILIBRIA OF THE COOPERATION GAME

{1, 2, . . . , n}). For each i ∈ C, it is assumed that the utility function Ui : [0, 1]n 7→ R is twice-
continuously differentiable, and so, by Weirstrass’ theorem, Ui is bounded above and below and
achieves its extrema. Following Propositions D.9 and D.10 in Appendix D, the Nash equilibria of
the cooperation game can be found by solving n separate one-dimensional variational inequality
problems. In particular, γ∗ ∈ [0, 1]n is a Nash equilibria of the cooperation game if and only if, for
all i ∈ C,

(γi − γ∗i )∇iUi(γ
∗) ≤ 0 for all γi ∈ [0, 1] (2.3)

where

∇iUi(γ) ,
∂Ui(γ)

∂γi
=
∑

j∈Vi

(

∂
∂γi

(γipij(Qj))

︷ ︸︸ ︷

pij(Qj) + γip
′
ij(Qj)− SOBP1(Cj − {i})cij

)

is the block gradient from Definition D.7. So in a local neighborhood of the Nash equilibrium
γ∗ ∈ [0, 1]n, any unilateral perturbation of a coordinate of γ∗ will result in equal or reduced utility.

A closed-form solution to the constrained variational inequality problem in Expression (2.3)
is difficult to find in general. In particular, because the play space is a Cartesian product of
1-dimensional [0, 1] factor spaces, Expression (2.3) is equivalent to the condition that for all i ∈ C,







Marginal benefit of cooperation
︷ ︸︸ ︷

Marginal cost of cooperation
︷ ︸︸ ︷

Nash cooperation level
︷ ︸︸ ︷

∑

j∈Vi

pij(Q
∗
j ) ≤

∑

j∈Vi

SOBP∗
1(Cj − {i})cij if γ∗i = 0,

∑

j∈Vi

(
pij(Q

∗
j ) + γ∗i p

′
ij(Q

∗
j )
)
=
∑

j∈Vi

SOBP∗
1(Cj − {i})cij if γ∗i ∈ (0, 1),

∑

j∈Vi

(
pij(Q

∗
j ) + p′ij(Q

∗
j )
)
≥
∑

j∈Vi

SOBP∗
1(Cj − {i})cij if γ∗i = 1

︸ ︷︷ ︸

∂
∂γi

(∑

j∈Vi

γipij(Qj)
)
∣
∣
∣
∣
γ=γ∗

︸ ︷︷ ︸

Pr(i receives j’s task|i volunteers)|γ=γ∗

(2.4)

where, for all j ∈ V , Q∗
j and SOBP∗ are respectively equivalent to Qj and SOBP when γ =

γ∗. The existence alone of a solution to the n simultaneous nonlinear equations of the form of
Expression (2.4) is not guaranteed in general. However, as discussed in Appendix D, variational
inequalities over product spaces are well suited for parallel and asynchronous computation. Under
special conditions on each utility function, a unique Nash equilibrium is guaranteed to exist, and
each of its coordinates in Expression (2.3) can be computed independently in the distributed and
asynchronous fashion described by Assumption 2.1.

Assumption 2.1. (Totally asynchronous distributed iteration) Take (c1, c2, . . . , cn) , C to rep-
resent the n distinct cooperators of C. Let T , W to be the indices of a sequence of physical
times, and let {γ(t)}t∈T , {(γc1(t), γc2(t), . . . , γcn(t))} be a sequence of iterated calculations in the
[0, 1]n play space. For each i ∈ C, subset T i ⊆ T corresponds to the times when coordinate γi(t)
is computed. Additionally, for each i, j ∈ C and each t ∈ T , there is an index τ ij(t) ∈ T of the
least-outdated version of coordinate γj available for the computation of coordinate γi with transition
mapping Ti : [0, 1]

n 7→ [0, 1] at time t such that 0 ≤ τ ij(t) ≤ t. That is, an outdated state estimate

γi(t) , (γic1(t), γ
i
c2(t), . . . , γ

i
cn(t)) , (γc1(τ

i
c1(t)), γc2(τ

i
c2(t)), . . . , γcn(τ

i
cn(t)))

6



2 COMPETITIVE EQUILIBRIA OF THE COOPERATION GAME

is available for the computation γi(t+ 1) = Ti(γ
i(t)) for each t ∈ T and i ∈ C. It is assumed that

(i) Set T i is countably infinite (i.e., |T i| = |T | = |N|) for all i ∈ C.

(ii) If subsequence {tk} of T i is such that limk→∞ tk = ∞, then limk→∞ τ ij(k) = ∞ for all i, j ∈

{1, 2, . . . , n}. That is, lim inft→∞ τ ij(t) = ∞ for all i, j ∈ {1, 2, . . . ,m}.

For all t ∈ T , sequence {γ(t)} is generated by the totally asynchronous distributed iteration (TADI)

γi(t+ 1) ,

{

Ti(γ
i(t)) if t ∈ T i,

γi(t) if t /∈ T i
(2.5)

where γ(t) , (γc1(t), γc2(t), . . . , γcn(t)).

For each i ∈ C, the transition mapping Ti : [0, 1]
n 7→ [0, 1] in Expression (2.5) is defined by

Ti(γ) , min{1,max{0, γi + σi∇iUi(γ)}}

for all γ ∈ [0, 1]n where σi ∈ R>0 is a step size that scales movement along the utility gradient
∇iUi. The corresponding TADI-generated {γ(t)} sequence represents the collective motion of n
self-interested agents that each climb their respective gradient in order to maximize their expected
rate of point return. That is, Expression (2.5) may be viewed as a dynamical system model of
coupled agents that each take independent actions. For example, in the synchronous case,

γi(t+ 1) = min{1,max{0, γi(t)− σi
∑

j∈Vi

SOBP1(Cj − {i})cij + σi
∑

j∈Vi

(

uij(γ),
∂
∂γi

γipij(Qj)

︷ ︸︸ ︷

pij(Qj) + γi(t)p
′
ij(Qj)

)

︸ ︷︷ ︸

,ui(γ)=
∑

j∈Vi
uij(γ)

}}

for all i ∈ C. Here, the underbraced payment expression ui(γ) may be viewed as a feedback control
on the behavior of cooperator agent i. By Proposition C.6, there exists a constant SOBP > 0 such
that SOBP1(Γ) ≥ SOBP for all Γ ⊆ C. So, assuming that cij > 0 for all i, j ∈ A, the undriven
response of the system (i.e., the response when ui ≡ 0 for all i ∈ C) reaches γ(T ) = 0 in some
finite time T ∈ W. That is, the intrinsic agent behavior is not to cooperate. For each i ∈ C, it is
desirable to find a control law ui : [0, 1]

n 7→ [0, 1] that feeds forward the payment
∑

j∈Vi
pij(Qj(γ)) to

destabilize the no-cooperation equilibrium and provides feedback γi
∑

j∈Vi
p′ij(Qj(γ)) to stabilize the

Nash equilibrium. Hence, payment is a control mechanism used for robustly stabilizing cooperation.

2.2.1 Stabilizing payment functions

Under the control interpretation where, for all i ∈ C, ui ,
∑

j∈Vi
pij(Qj) + γi

∑

j∈Vi
p′ij(Qj) is

the sum of a feed-forward and a feedback control law, intuition suggests that a nontrivial Nash
equilibrium can be stabilized by the control if, for each j ∈ Vi, the nonlinear feedback gain p′ij(Qj)
is strictly negative everywhere with greater action at low cooperation levels. These conditions are
made more precise by Definition 2.2 of a stabilizing payment function pij with j ∈ Vi.

Definition 2.2. (Stabilizing payment function) For k ∈ N, a stabilizing payment function (SPF)
p : [0, k] 7→ R is a twice-continuously-differentiable function such that:

(i) It is strictly decreasing. In particular, p′(Q) , dp(Q)/dQ < 0 for all Q ∈ [0, k].

(ii) It is convex. In particular, p′′(Q) , d2p(Q)/d2Q ≥ 0 for all Q ∈ [0, k].

7
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Q

pℓ(Q)
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p

Q

ph(Q)

κ > 0
ε > κ+ 1

b

b

0

A

0 1 2 k

−Aκ
εκ

(d) ph(Q) , Aεκ/(ε+Q)κ

Figure 2.3: Sample stabilizing payment (i.e., inverse demand) functions.

(iii) Its convexity is eventually dominated by its slope. In particular,

γp′′(Q) ≤ −p′(Q) for all Q ∈ [γ, k − (1− γ)] with γ ∈ [0, 1]. (2.6)

Consider cooperator i ∈ C and a connected conveyor j ∈ Vi. Under the control law interpre-
tation, condition (i) guarantees that the nonlinear feedback gain p′ij(Qj) is always negative. As
shown in the proof of Proposition 2.1, the SPF conditions guarantee that the payment slope is
bounded away from zero, which is equivalent to requiring that the negative feedback control law
never vanishes. Likewise, condition (ii) of Definition 2.2 states that the feedback gain should relax
as the total quantity Qj ,

∑

k∈Cj
γk of cooperation increases, and condition (iii) ensures that the

relaxation of the feedback p′ij is sufficiently moderate. That is, condition (iii) of Definition 2.2
states that

d

dγi
(

Stabilizing feedback
︷ ︸︸ ︷

γip
′
ij(γi + (Qj − γi)

︸ ︷︷ ︸

,κ

)) ≤ 0 for all γi ∈ [0, 1] and κ ∈ [0, |Cj |
︸︷︷︸

,k

− 1].

Because pij is convex, the function f1(κ) , γp′ij(γ + κ) is increasing for any γ > 0. However,

for any κ ∈ [0, k − 1], the continuous function f2(γ) , γp′(γ + κ) is initially decreasing because
f2(0) = 0 and f2(γ) < 0 for all γ ∈ (0, 1]. The requirement in item (iii) is that f2 be decreasing for
all γ ∈ [0, 1] and all κ ∈ [0, k − 1]. That is, the magnitude of the feedback control action should
decelerate, but it should not decrease.

Proposition 2.1. (Non-vanishing negative feedback) For k ∈ N and any stabilizing payment
function p : [0, k] 7→ R, p(0) > p(Q) > p(k) and p′(0) ≤ p′(Q) ≤ p′(k) < 0 for all Q ∈ (0, k).

Proof of Proposition 2.1 given in Appendix B.

As shown in Proposition B.1, the set of SPFs is closed under conical combinations (i.e., it is a
filled cone). So for i ∈ C, if pij is an SPF for all j ∈ Vi, then the sum

∑

j∈Vi
pij(Qj) is itself an

SPF. Additionally, by the definition of pij(Qj) in Expression (2.2), if pkj (Qj) is an SPF for all j ∈ V
and k ∈ Yj , then pij(Qj) will also be an SPF for all i ∈ C.

Four example SPFs are shown in Figure 2.3. Each payment function meets the simpler condition
in Proposition 2.2; however, using the weaker condition (iii) of Definition 2.2, it is only necessary
for ε ≥ κ in (d). Additionally, the polynomial function in (c) is an extension of the linear function
in (a).

Proposition 2.2. (Sufficient conditions for payment stabilization) Take k ∈ N and function
p : [0, k] 7→ R. If 0 ≤ p′′(Q) < −p′(Q) for all Q ∈ [0, k], then p is a stabilizing payment function.

Proof of Proposition 2.2 given in Appendix B.
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2 COMPETITIVE EQUILIBRIA OF THE COOPERATION GAME

2.2.2 Topological constraints

Ensuring that pij is an SPF for all j ∈ Vi does not guarantee that the n independent agents
will achieve of a stable Nash equilibrium. As shown in Expression (2.4), if the marginal cost
of cooperation (MCC) varies greatly along TADI trajectories, then convergence to a unique Nash
equilibrium may be impossible. However, if the Hessian of each agent’s utility function meets certain
diagonal dominance conditions, then the agent’s progress in moving toward the Nash equilibrium
will be dominated by its own actions, and the agent will consistently move in a productive direction.

The MCC associated with a given cooperator i ∈ C depends primarily upon the number of other
cooperators connected to each conveyor j ∈ Vi. If the topology of the task-processing network meets
special conditions involving the set of cooperators connected to each conveyor, then there exists
a tractable bound on the variation in the MCC. These conditions will be precisely specified in
Theorem 2.1 using Definition 2.3.

Definition 2.3. (k-conveyor) Conveyor i ∈ V is a k-conveyor if it has exactly k ∈ N outgoing
connections to cooperators (i.e., if k = |Ci|).

2.2.3 Convergence result

Theorem 2.1 gives sufficient conditions for convergence to the Nash equilibrium.

Theorem 2.1. (Convergence to the Nash equilibrium of the cooperation game) Assume that

(i) For all i ∈ C and j ∈ Vi, pij is a stabilizing payment function.

(ii) For all j ∈ V, |Cj | ≤ 3 (i.e., no conveyor can have more than 3 outgoing links to cooperators).

(iii) For i ∈ C and j ∈ Vi, if j is a 3-conveyor, then there must be some k ∈ Vi that is a 2-conveyor.

Define T : [0, 1]n 7→ [0, 1]n by T (γ) , (T1(γ), T2(γ), . . . , Tn(γ)) where, for each i ∈ C,

Ti(γ) , min{1,max{0, γi + σi∇iUi(γ)}} where
1

σi
≥ 2|Vi|max

k∈Vi

|p′ik(0)| (2.7)

for all γ ∈ [0, 1]n. If

min
j∈Vi

|p′ij (|Cj |) | >

(

|Vi| −
1

2

)

max
j∈Vi

|cij | for all i ∈ C, (2.8)

then the TADI sequence {γ(t)} generated with mapping T and the outdated estimate sequence {γi(t)}
for all i ∈ C each converge to the unique Nash equilibrium of the cooperation game.

Proof of Theorem 2.1 given in Appendix B.

The restriction in Expression (2.8) is similar to the network generalization of Hamilton’s rule [25]
(i.e., benefit/cost > 1/relatedness where relatedness = 1/(average number of connections)) dis-
cussed by Ohtsuki et al. [39] and Nowak [37]. In particular, as the number of connected conveyors
increases, a cooperator’s relatedness to each of them decreases, and stable cooperation may require
increased benefits (i.e., steeper payment slopes to dominate uncertain costs). Additionally, if σi is
picked to satisfy Expression (2.7) for each i ∈ C, then Proposition B.2 gives a sufficient condition
that simplifies Expression (2.8). The complete proof of Theorem 2.1 is given in Appendix B. Most
of the proof is a specialized combination of Propositions D.3 and D.4 that have proofs given by
Bertsekas and Tsitsiklis [8]. However, the novel result is the relationship between the assumptions
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2 COMPETITIVE EQUILIBRIA OF THE COOPERATION GAME

of Theorem 2.1 and the assumptions on which Propositions D.3 and D.4 are predicated, and so
that relationship is discussed in detail here.

By assumption (i) (i.e., all payment functions are stabilizing), for any γ ∈ [0, 1]n and i ∈ C,

∇2
iiUi(γ) ,

∂2Ui(γ)

∂γi
2 =

∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
=
∑

j∈Vi

<0
︷ ︸︸ ︷

p′ij(Qj) +
∑

j∈Vi

(

≤0
︷ ︸︸ ︷

p′ij(Qj) + γip
′′
ij(Qj)

)
< 0,

and

∇2
iiUi(γ) =

∑

j∈Vi

(
2p′ij(Qj) +

≥0
︷ ︸︸ ︷

γip
′′
ij(Qj)

)
≥
∑

j∈Vi

2p′ij(Qj) = −2
∑

j∈Vi

|p′ij(Qj)|

≥ −2
∑

j∈Vi

max
k∈Vi

|p′ik(0)| = −2|Vi|max
k∈Vi

|p′ik(0)| ≥ −2|Vi|max
k∈Vi

|p′ik(0)|. (2.9)

So, by the assumed limits on step size σi given in Expression (2.7),

0 > ∇2
iiUi(γ) ≥ −

1

σi
or, equivalently, 0 < |∇2

iiUi(γ)| ≤ 2|Vi|max
k∈Vi

|p′ik(0)| ≤
1

σi

for all i ∈ C. So the TADI step size and each agent’s utility function’s concavity are inversely related.
For example, if a cooperator services a large number of incoming conveyors or if a cooperator is
connected to a conveyor with a very steep payment function, then small perturbations in its level of
cooperation will bring large changes in the amount of payment received. In this case, the cooperator
must sample its utility gradient very finely by making only small changes in its cooperation level at
each TADI step. The “2” is present in the bound in Expression (2.9) because each payment function
controls the utility gradient through sum of both feed-forward pik and feedback γip

′
ik payment, and

hence the curvature is twice affected by the payment slope.
As discussed, to ensure a kind of diagonal dominance of each agent’s utility Hessian (i.e., the

Jacobian of each utility gradient), the topology of the task-processing network must be limited.
So take γ ∈ [0, 1]n and cooperator i ∈ C. For another cooperator ℓ ∈ C − {i}, if ℓ /∈ Cj (i.e., ℓ
is not an outgoing cooperator for j), then ∂Qj/∂γℓ = 0 and ∂ SOBP1(Cj − {i})/∂γℓ = 0 where
Qj ,

∑

k∈Cj
γk and SOBP is from Definition C.1. So by introducing SOMS from Proposition C.11,

0 ≤
∑

ℓ∈C
ℓ6=i

|∇2
iℓUi(γ)| ,

∑

ℓ∈C
ℓ6=i

∣
∣
∣
∣
∣

∂2Ui(γ)

∂γi∂γℓ

∣
∣
∣
∣
∣
=
∑

ℓ∈C
ℓ6=i

∣
∣
∣
∣
∣
∣
∣

∑

j∈Vi

[ℓ ∈ Cj ]




p′ij(Qj) + γip

′′
ij(Qj) +

∂/∂γℓ SOBP1(Cj−{i})
︷ ︸︸ ︷

SOMS2(Cj − {i, ℓ})cij






∣
∣
∣
∣
∣
∣
∣

where [·] is the Iverson bracket (i.e., [S] = 1 or [S] = 0 when statement S is true or false). Hence,

∑

ℓ∈C
ℓ6=i

|∇2
iℓUi(γ)| ≤

∑

ℓ∈C
ℓ6=i

∑

j∈Vi

[ℓ ∈ Cj ]

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

︸ ︷︷ ︸

≤0

∣
∣+ |SOMS2(Cj − {i, ℓ})| |cij |

)

.

By Propositions C.14 and C.15, 0 < SOMS2(Γ) ≤ 1/2 for all Γ ⊆ C, and so

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

ℓ∈C
ℓ6=i

∑

j∈Vi

[ℓ ∈ Cj ]

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

.
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Furthermore, because these two finite sums can be transposed,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)
∑

ℓ∈C
ℓ6=i

[ℓ ∈ Cj ].

Hence, the second sum is a count of all elements in (C − {i}) ∩ Cj . That is,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

|{ℓ ∈ C : ℓ ∈ Cj − {i}}|
︸ ︷︷ ︸

Number of non-i cooperators

connected to j

=
∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

|Cj − {i}| ,

and, because j ∈ Vi if and only if i ∈ Cj ,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

(|Cj | − 1) .

However, by assumption (ii), each conveyor j ∈ V has no more than three outgoing connections to
cooperators (i.e., |Cj | ≤ 3). Additionally, by assumption (iii), if j ∈ Vi is a 3-conveyor (i.e., it has
3 outgoing cooperator connections), then there must be some other conveyor m ∈ Vi − {j} that is
a 2-conveyor. So letting m ∈ Vi be the 2-conveyor that is guaranteed to exist,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

Doubled contribution to sum from
other cooperators connected to

assumed 3-conveyors in Vi − {m}
︷ ︸︸ ︷

2
∑

j∈Vi−{m}

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

︸ ︷︷ ︸

≤0

∣
∣+

1

2
|cij |

)

+

Contribution to sum from
other cooperator of 2-conveyor m ∈ Vi
︷ ︸︸ ︷
∣
∣p′im(Qm) + γip

′′
im(Qm)

︸ ︷︷ ︸

≤0

∣
∣+

1

2
|cim|.

Because of item (iii) in Definition 2.2 of an SPF,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi−{m}

(

−
(
2p′ij(Qj) + 2γip

′′
ij(Qj)

)
+ |cij |

)

−
(
p′im(Qm) + γip

′′
im(Qm)

)
+

1

2
|cim|

=
∑

j∈Vi−{m}

(

−
(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+ |cij |

)

−

≥0
︷ ︸︸ ︷
∑

j∈Vi−{m}

γip
′′
ij(Qj)

−
(
p′im(Qm) + γip

′′
im(Qm)

)
+

|cim|

2
,

and so, due to the convexity of stabilizing payment functions,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi−{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
−
(
p′im(Qm) + γip

′′
im(Qm)

)
+

∑

j∈Vi−{m}

|cij |+
|cim|

2
.

11
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Because A is finite, Vi ⊆ A is finite, and so

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi−{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
−
(
p′im(Qm) + γip

′′
im(Qm)

)
+

(

|

m∈Vi
︷ ︸︸ ︷

Vi − {m}|+
1

2

)

max
j∈Vi

|cij |

= −
∑

j∈Vi−{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
−
(
p′im(Qm) + γip

′′
im(Qm)

)
+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |,

and

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi−{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
−
(
p′im(Qm) + γip

′′
im(Qm)

)
+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |.

By expanding the summation’s index set to include m ∈ Vi and subtracting the new contribution,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+
(
2p′im(Qm) + γip

′′
im(Qm)

)
−
(
p′im(Qm) + γip

′′
im(Qm)

)

+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |,

and by canceling some of the resulting terms,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∇2

iiUi(γ)
︷ ︸︸ ︷
∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+

<0
︷ ︸︸ ︷

p′im(Qm) +

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

where the Hessian diagonal term ∇2
iiUi(γ) is evident. So

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −∇2

iiUi(γ)− |p′im(Qm)|+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

≤ −∇2
iiUi(γ)−min

j∈Vi

|p′ij(Qj)|+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

= −∇2
iiUi(γ)−

(

min
j∈Vi

|p′ij(Qj)| −

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

)

︸ ︷︷ ︸

> 0 by Expression (2.8)

,

and, by the assumption in Expression (2.8), the underbraced expression is strictly positive. Hence,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ < −∇2

iiUi(γ). (2.10)

Because ∇2
iiUi(γ) < 0, Expression (2.10) states that |∇2

iiUi(γ)| >
∑

ℓ∈C,ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣. So assump-

tions (ii) and (iii) and Expression (2.8) ensure strict diagonal dominance in the ith row of each
utility Hessian. For each agent, its corresponding utility function is not only concave along its play
dimension, but its concavity dominates the curvature along any other direction.
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Figure 2.4: Many-agent task-processing network with stable topology.

The strict diagonal dominance of the ith row of the utility Hessian also implies properties of the
TADI dynamical system. Precisely, the Jacobian of vector-valued function [∇c1Uc1 ,∇c2Uc2 , . . . ,∇cnUcn ]

⊤

(where unique ck ∈ C for all k ∈ {1, 2, . . . , n}) is strictly row diagonally dominant. Moreover, local
stability of the synchronous approximation of the TADI follows from the stability of this Jacobian
linearization. Using the payment-as-control interpretation, these conditions ensure controllability.
In particular, Expression (2.8) is equivalent to

Maximum variation
of payment control

due to self movement
︷ ︸︸ ︷

min
j∈Vi

2|p′ij (|Cj |) | >

Maximum variation of intrinsic cost
due to movement of others
︷ ︸︸ ︷
(

2|Vi| − 1
︸ ︷︷ ︸

Twice the number of 3-conveyors

plus a 2-conveyor

)

max
j∈Vi

|cij | for all i ∈ C. (2.11)

The “2” in the expression on the left-hand side of Expression (2.11) reflects the dual payment
action from feed-forward and feedback controls, and the overbraced expression on the right-hand
side reflects the bound on the 3-conveyor-caused dual change and the 2-conveyor-caused single
change in SOBP that is guaranteed by assumptions (ii) and (iii). So the number of incoming
conveyors maxi∈C |Vi| or the magnitude of cooperation cost maxi∈C,j∈Vi

|cij | can only be increased
if the minimum payment slope minj∈Vi

|p′ij(Cj)| can also be increased. If sufficiently large feedback
gain (i.e.,

∑

j∈Ci
p′ij) is unavailable, the evolution of the TADI trajectory may be too sensitive to

cost variations (i.e., the payment signal may fail to dominate the intrinsic cost signal).

2.2.4 Finding necessary conditions on network topology for stabilization

As shown in the derivation of Expression (2.11), every 3-conveyor contributes two payment slope
p′ij terms to ∇2

iℓUi that are cancelled by the two slope terms in ∇2
iiUi. Hence, when 3-conveyors are

connected to a cooperator, the cooperator loses control of its utility gradient along its cooperation
coordinate unless there exists a 2-conveyor that it can dominate. So 2-conveyors are themselves
stabilizers that allow a cooperator i ∈ C to focus its decision making on the conveyors in Vi for
which there is only one other cooperator competing for payment. For example, in the complex TPN
in Figure 2.4, the 3-conveyors in the network (e.g., 2, 4, 7, and 10) could destabilize the gradient
ascent if the 2-conveyors (e.g., 1, 5, 6, 8, 9, and 11) were not also present. It may be possible to
weaken Theorem 2.1 to allow for conveyors with n > 3 outgoing connections to cooperators so long
as the slopes of the n-conveyor payment functions can be dominated by those of other 1-conveyors.
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Figure 2.5: AAV optimal cooperation willingness as encounter rates vary.

2.3 Example: Simulation of cooperative AAV scenario

Consider an AAV scenario like the one shown in Figure 2.2. Assume that πk
i = 1, cℓij = 0.1, and

qℓij = 1 for all i ∈ A, j ∈ A − {i}, k ∈ Yi, and ℓ ∈ Yj . Also assume that λ1
1 = 0.6, λ3

3 = 1.7,

0 < λ2 ≤ 5, and the linear payment function pii(Qi) , 1 − Qi/λ
i
i for all i ∈ A. Hence, the three

otherwise equivalent agents face different task encounter rates, and their payment functions have
slopes that are inversely proportional to each encounter rate. So agents associated with higher
encounter rates have a higher demand for cooperation and thus have inelastic payment functions
(i.e., cooperation retains its high value even when a high quantity is available).

A conservative choice of step size σℓ , 1/(4maxi∈A,j∈Vi
p′ij([0, 0, 0]

⊤) for all ℓ ∈ A yields a
convergent TADI for this scenario. Matlab simulation results summarized in Figure 2.5 show how
the resulting Nash equilibrium γ∗ depends upon the AAV encounter rates. In particular, the Nash
equilibrium has the desirable feature that λi > λj implies that γ∗i < γ∗j for all i, j ∈ A. So agents
that are locally busy are less willing to cooperate, and agents that are relatively idle are more
willing to cooperate. In Figure 2.5, as λ2 increases, payment function p2 to agents 1 and 3 becomes
shallower and causes the optimal γ∗1 and γ∗3 to increase. However, as γ∗1 (or γ∗3) increases, payment
p3(Q3) (or p1(Q1)) to agent 2 is depressed and γ∗2 decreases. Moreover, at point b when the ascent
of γ∗1 truncates, the rate that γ∗2 decreases shallows. At point c when γ∗3 also truncates, the γ∗2 graph
flattens entirely. Hence, to reduce the load on the saturated cooperators, agent 2 reciprocates for
their cooperation by not reducing its own cooperation level to zero. So even though each agent’s
own encounter rate has no direct relationship to its TADI-directed movement, a desirable coupling
between encounter rates and optimal cooperation levels emerges.

3 Proposed research plan

A framework for cooperative task processing on a network has been presented. Using this frame-
work, a particular totally asynchronous cooperative control policy was shown to stabilize the Nash
equilibrium of a cooperation game. This Nash equilibrium balances local utility (e.g., fatigue) and
remote utility (e.g., efficient allocation of resources). The present work adjusts cooperation will-
ingness in order to maximize economic returns over a lifetime of task encounters and processing
requests. The proposed future TPN research will be conducted along the following timeline:

• Optimal forwarding tendencies (1 month): In the present work, for each agent i ∈ A,
the forwarding probability πij for each j ∈ Yi is a provided parameter, and the optimal
cooperation willingness γi is chosen. Alternatively, willingness γij of agent i ∈ A to cooperate
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3 PROPOSED RESEARCH PLAN

with agent j ∈ Vi can be taken as a parameter, and the optimal forwarding probability πj
can be found. The present utility function will be generalized to handle this case. Just as
the present utility rewards cooperation with payment from stabilizing payment functions, the
generalized utility function will penalize additional forwarding with stabilizing cost functions.
Because this problem is the dual of the one already studied, a dual result is expected.

• Non-Cartesian cooperation–forwarding coordinates (1 month): The work will then be
extended to choose πi and γi on each agent i ∈ A simultaneously. Because it is unlikely
that πi and γi must be computed independently for each agent i ∈ A, the Cartesian product
assumption will be relaxed for the pair (πi, γi). Hence, agents will be able to choose πi and
γi intelligently to maximize local returns. Additionally, the opportunity for system designers
to impose cooperation–forwarding constraints will be investigated. For example, it may be
desirable to force each agent to increase cooperation probability as it increases its forward-
ing probability. These constraints may mitigate the need for stabilizing payment and cost
functions.

• Specialized cooperation and forwarding (2 months): The research presented and proposed
above assumes that each agent adjusts scalar cooperation and forwarding variables. However,
a general task-processing network should allow for policies on each agent that differ across its
connected conveyors and cooperators. As in the combined cooperation–forwarding case above,
these vectors are computed on a single agent and need not come from a product space. Two
months of work are required because it will likely be challenging to generalize of all of the
tasks above.

• Processing time and capacity constraints (2 months): A weakness of the present work is
that it implicitly assumes that agents either have infinite processing capacity or that all tasks
have negligible processing time. Processing and switching durations are central motivations
for the work of Perkins and Kumar [42] just as finite capacity motivates the work of Cruz [15];
hence, the omission of these effects here is significant. The present work optimizes the long-
term rate of gain of each agent based on rewards issued at the instant each task arrives.
This rate will be depressed by the processing time of each task. Because each arrival is
independent, the work of Johns and Miller [27] can be used to model the long-term rate of
gain when considering task processing times. Hence, the utility functions discussed in present
and future work will be modified to include these effects. If analytically tractable, optimal
results will be found that account for time. In particular, the most general framework possible
from the above studies will be extended to the processing time case.

• Reciprocity (6 months): The present work finds a static equilibrium that maximizes coop-
eration game returns and then builds a dynamic control to stabilize that equilibrium. How-
ever, the reciprocity imagined by Trivers [47], investigated by Axelrod [5], and observed in
nature [14, 16, 17, 35] must necessarily be studied as time evolves. That is, cooperative behav-
iors may not be compensated immediately but instead result in future reciprocal behaviors.
Such mechanisms, where agents have behaviors that depend upon memory of prior interac-
tions, may abate the need for engineering fictitious marketplaces. Similar mechanisms have
been studied in packet forwarding networks [e.g., 1]; however, reciprocity for distributed task
processing needs to be investigated. This investigation requires six months of study as it may
require an entirely new cooperation framework and challenging analysis of the dynamics.

Additionally, with the growth in understanding of optimal behaviors on task-processing networks,
illustrative examples like the simulation results given in Section 2.3 will be collected that show how
task-processing networks synthesize desirable resource allocation goals.
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A MATHEMATICAL SYMBOLS AND NOTATION

A Mathematical symbols and notation

≡ identically equal

≈ approximately equal

, defined as

⊂ (⊃) strict (i.e., not equal) subset (superset) of

⊆ (⊇) subset (superset) of

{. . . : P} a subset of set {. . .} where predicate P holds for every element of the set

∅ empty set (i.e., the null set {})

X (X ) set X (set of sets X )

℘(X ) power set of X (i.e., {Y : Y ⊆ X})

X − Y set difference (i.e., all elements of Y removed from X )

|X | cardinality (i.e., generalization of size) of set X

[S] Iverson bracket for statement S (i.e., [S] = 1 or 0 if S is true or false)

inf (sup) infimum (supremum) — least upper (greatest lower) bound

lim supX superior/outer limit of set X (e.g., infn→∞ supm≥n Sm for sequence (Sm))

lim inf X inferior/inner limit of set X (e.g., supn→∞ infm≥n Sm for sequence (Sm))

limX limit of set X (i.e., value upon which lim inf X and lim supX agree)

X closure of set X (i.e., limit points of the set)

N natural numbers (i.e., {1, 2, . . . })

W whole numbers (i.e., {0, 1, 2, . . . })

Z integers (i.e., {. . . ,−2,−1, 0, 1, 2, . . . })

Q rational numbers (i.e., {p/q : p ∈ Z, q ∈ N})

R real numbers (i.e., Q)

R≤0 (R≥0) non-positive (non-negative) real numbers

R<0 (R>0) strictly negative (positive) real numbers

R extended real numbers (i.e., compactification R ∪ {−∞,∞})

→ tends to (i.e., denotes a limit)

x⊤ (A⊤) transpose of vector x (matrix A)

‖x‖p (‖A‖p) (induced) p-norm of vector x (matrix A)

Bε(x
∗) in normed vector space X , open ball {x ∈ X : ‖x− x∗‖ < ε}

Bp
ε(x∗) p-ball (i.e., open ball Bε(x

∗) under p-norm ‖·‖p)

B∞
ε (x∗) ∞-ball (i.e., open ball Bε(x

∗) under maximum norm ‖·‖∞)

f : X 7→ Y function from X into Y

f ′ (f ′(x0)) first derivative df/dx (at point x0 ∈ X ) of function f : X 7→ Y where X ,Y ⊆ R

f ′′ (f ′′(x0)) second derivative d2f/dx2 (at point x0 ∈ X ) of function f : X 7→ Y where X ,Y ⊆ R

∇f gradient (transposed Jacobian) of scalar-valued (vector-valued) function f

∇2f Hessian of scalar-valued function f (i.e., ∇∇f)

∇if For X1 × · · · × Xn, i
th block gradient of scalar-valued function f

∇2
ijf ∇i∇jf (when Xi ⊆ R for all i, ∇2

ijf is ith row and jth column of Hessian ∇2f)
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B PROOFS OF CENTRAL RESULTS

B Proofs of central results

B.1 Properties of stabilizing payment functions

Proof of Proposition 2.1. Stabilizing payment function p is differentiable, defined over a compact
set, and strictly decreasing, and so the bounds on p are clear by Weierstrass’ theorem. Payment
slope p′ is differentiable, defined over a compact set, and nondecreasing, and so p′ is bounded by
p′(0) and p′(k). However, because p is strictly decreasing, p′(k) < 0.

Proof of Proposition 2.2. Function p is strictly decreasing and convex. Additionally, because γ ∈
[0, 1], then γp′′(Q) ≤ p′(Q) for all Q ∈ [0, k]. So all conditions of Definition 2.2 are met.

Proposition B.1. (Conical combinations of stabilizing payment functions) Take k ∈ N and a set
of stabilizing payment functions {p1, p2, . . . , pm} where pj : [0, k] 7→ R for all j ∈ {1, 2, . . . ,m}.
Assume that there are constants {α1, α2, . . . , αm} where

(i) αi ∈ R≥0 for all i ∈ {1, 2, . . . ,m}.

(ii) There is some j ∈ {1, 2, . . . ,m} such that αj > 0.

Then the nontrivial conical combination p : [0, k] 7→ R defined by

p(Q) , α1p1(Q) + α2p2(Q) + · · ·+ αmpm(Q)

for all Q ∈ [0, k] is also a stabilizing payment function.

Proof of Proposition B.1. The function p is clearly twice-continuously differentiable as it is a linear
combination of twice-continuously-differentiable functions. To be a stabilizing payment function, p
must satisfy requirements (i), (ii), and (iii) of Definition 2.2.

(i) Assume that i ∈ {1, 2, . . . ,m} is such that αi > 0. Then, for each Q ∈ [0, k],

p′(Q) = α1p
′
1(Q) + α2p

′
2(Q) + · · ·+ αip

′
i(Q) + · · ·+ αnp

′
n(Q) ≤ αip

′
i(Q) < 0,

and so p is strictly decreasing.

(ii) For each Q ∈ [0, k],

p′′(Q) = α1p
′′
1(Q) + α2p

′′
2(Q) + · · ·+ αnp

′′
n(Q) ≥ 0,

and so p is a convex function.

(iii) For each γ ∈ [0, 1] and each Q ∈ [γ, k − (1− γ)],

p′(Q) + γp′′(Q) = α1p
′
1(Q) + · · ·+ αnp

′
n(Q) + γ

(
α1p

′′
1(Q) + · · ·+ αnp

′′
n(Q)

)

= α1

(
p′1(Q) + γp′′1(Q)

)
+ · · ·+ αn

(
p′n(Q) + γp′′n(Q)

)
≤ 0,

and so γp′′(Q) ≤ −p′(Q).

B.2 Nash convergence in the cooperation game

What follows is a complete proof of Theorem 2.1, which is the principal result of this work. As
discussed in Section 2.2, the proof uses numerical constraints on the distributed algorithm and
topological constraints on the task-processing network to restrict aspects of the curvature of each
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agent’s utility function. Those bounds can be combined with results from Bertsekas and Tsit-
siklis [8] to show asymptotic convergence to the Nash equilibrium of the cooperation game. In
particular, provided that the utility function is so constrained, the desired result follows almost
entirely from Propositions D.3 and D.4 that are included in Appendix D along with other sup-
porting material from Bertsekas and Tsitsiklis [8]. To aid in the interpretation of the predicated
constraints, specialized versions of those proofs are applied in line with this proof.

Proof of Theorem 2.1. Define a mapping R : [0, 1]n 7→ Rn by R(γ) , (R1(γ), R2(γ), . . . , Rn(γ))
where, for each i ∈ {1, 2, . . . , n},

Ri(γ) , γi + σi∇iUi(γ)

for each γ ∈ [0, 1]n. By Propositions D.7 and D.8, the mapping T is the orthogonal projection
of R onto the Cartesian product space [0, 1]n of real intervals. In particular, T (γ) = [R(γ)]+ and
Ti(γ) = [Ri(γ)]

+ for each i ∈ {1, 2, . . . , n}.
Let x, y ∈ [0, 1]n. By the projection theorem in Proposition D.6, the orthogonal projection [·]+

is non-expansive with respect to the ℓ2-norm. Hence,

‖T (x)− T (y)‖∞ = max
i∈C

|Ti(x)− Ti(y)| = max
i∈C

‖Ti(x)− Ti(y)‖2

≤ max
i∈C

‖Ri(x)−Ri(y)‖2 = max
i∈C

|Ri(x)−Ri(y)|

= ‖R(x)−R(y)‖∞. (B.1)

Because [0, 1]n is a convex set, tx + (1 − t)y ∈ [0, 1]n for all t ∈ [0, 1]. So, for each i ∈ C, define
function gi : [0, 1] 7→ R by the convex combination

gi(t) , tRi(x) + (1− t)Ri(

∈[0,1]n
︷ ︸︸ ︷

tx+ (1− t)y) = txi + (1− t)yi + σi∇iUi(tx+ (1− t)y),

which shares being continuously differentiable with ∇iUi. Then, for each i ∈ C, Ri(x) = gi(1) and
Ri(y) = gi(0). Furthermore, by the fundamental theorem of calculus,

‖T (x)− T (y)‖∞ ≤ ‖R(x)−R(y)‖∞ = max
i∈C

|Ri(x)−Ri(y)|

= max
i∈C

|gi(1)− gi(0)| = max
i∈C

∣
∣
∣
∣

∫ 1

0
g′i(t) dt

∣
∣
∣
∣

≤ max
i∈C

∫ 1

0
|g′i(t)| dt ≤ max

i∈C
max
t∈[0,1]

|g′i(t)|

∫ 1

0
dt = max

i∈C
max
t∈[0,1]

|g′i(t)|.

Then, by applying the chain rule to g′i for each i ∈ C,

‖R(x)−R(y)‖∞ ≤ max
i∈C

max
t∈[0,1]

|xi − yi + σi(∇∇iUi(tx+ (1− t)y
︸ ︷︷ ︸

∈[0,1]n

))⊤(x− y)|,

but tx+ (1− t)y ∈ [0, 1]n for all t ∈ [0, 1]; so

‖R(x)−R(y)‖∞ ≤ max
i∈C

max
z∈[0,1]n

|xi − yi + σi(∇∇iUi(z))
⊤(x− y)|.
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By Expression (D.2) that follows from Definition D.7 of the block gradient in a product space, row
vector ∇∇iU

⊤
i =

[
∇2

i1Ui ∇2
i2Ui · · · ∇2

inUn

]
. So, by expanding the dot product,

‖R(x)−R(y)‖∞ ≤ max
i∈C

max
z∈[0,1]n

∣
∣
∣
∣

(
1 + σi∇

2
iiUi(z)

)
(xi − yi) +

∑

ℓ∈C
ℓ6=i

σi∇
2
iℓUi(z)(xℓ − yℓ)

∣
∣
∣
∣

≤ max
i∈C

max
z∈[0,1]n

(
∣
∣1 + σi∇

2
iiUi(z)

∣
∣ |xi − yi|+

∑

ℓ∈C
ℓ6=i

σi|∇
2
iℓUi(z)||xℓ − yℓ|

)

≤ max
i∈C

max
z∈[0,1]n

(
∣
∣1 + σi∇

2
iiUi(z)

∣
∣+
∑

j∈C
j 6=i

σi|∇
2
iℓUi(z)|

)

‖x− y‖∞. (B.2)

However, by assumption (i), for any γ ∈ [0, 1]n and i ∈ C,

∇2
iiUi(γ) ,

∂2Ui(γ)

∂γi
2 =

∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
=
∑

j∈Vi

<0
︷ ︸︸ ︷

p′ij(Qj) +
∑

j∈Vi

(

≤0
︷ ︸︸ ︷

p′ij(Qj) + γip
′′
ij(Qj)

)
< 0,

(B.3)
and

∇2
iiUi(γ) =

∑

j∈Vi

(
2p′ij(Qj) +

≥0
︷ ︸︸ ︷

γip
′′
ij(Qj)

)
≥
∑

j∈Vi

2p′ij(Qj) = −2
∑

j∈Vi

|p′ij(Qj)|

≥ −2
∑

j∈Vi

max
k∈Vi

|p′ik(0)| = −2|Vi|max
k∈Vi

|p′ik(0)| ≥ −2|Vi|max
k∈Vi

|p′ik(0)|.

So, by the assumed limits on step size σi given in Expression (2.7),

−
1

σi
≤ ∇2

iiUi(γ) < 0 (B.4)

for all i ∈ C. Hence, following Expression (B.2),

‖T (x)− T (y)‖∞ ≤ max
i∈C

max
z∈[0,1]n

(
∣
∣1 +

≥−1
︷ ︸︸ ︷

σi∇
2
iiUi(z)

︸ ︷︷ ︸

≥0

∣
∣+
∑

ℓ∈C
ℓ6=i

σi|∇
2
iℓUi(z)|

)

‖x− y‖∞

= max
i∈C

max
z∈[0,1]n

(

1 + σi∇
2
iiUi(z) +

∑

ℓ∈C
ℓ6=i

σi|∇
2
iℓUi(z)|

)

‖x− y‖∞

= max
i∈C

max
z∈[0,1]n

(

1 + σi

(

∇2
iiUi(z) +

∑

ℓ∈C
ℓ6=i

|∇2
iℓUi(z)|

))

‖x− y‖∞. (B.5)

So take γ ∈ [0, 1]n and i ∈ C. For another cooperator ℓ ∈ C−{i}, if ℓ /∈ Cj (i.e., ℓ is not an outgoing
cooperator for j), then

∂Qj

∂γℓ
= 0 and

∂ SOBP1(Cj − {i})

∂γℓ
= 0,
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where Qj ,
∑

k∈Cj
γk and SOBP is from Definition C.1. So, by introducing SOMS from Proposi-

tion C.11,

0 ≤
∑

ℓ∈C
ℓ6=i

|∇2
iℓUi(γ)| ,

∑

ℓ∈C
ℓ6=i

∣
∣
∣
∣
∣

∂2Ui(γ)

∂γi∂γℓ

∣
∣
∣
∣
∣
=
∑

ℓ∈C
ℓ6=i

∣
∣
∣
∣
∣
∣
∣

∑

j∈Vi

[ℓ ∈ Cj ]




p′ij(Qj) + γip

′′
ij(Qj) +

∂/∂γℓ SOBP1(Cj−{i})
︷ ︸︸ ︷

SOMS2(Cj − {i, ℓ})cij






∣
∣
∣
∣
∣
∣
∣

where [·] is the Iverson bracket (i.e., [S] = 1 when statement S is true and [S] = 0 otherwise).
Hence, by the triangle inequality,

∑

ℓ∈C
ℓ6=i

|∇2
iℓUi(γ)| ≤

∑

ℓ∈C
ℓ6=i

∑

j∈Vi

[ℓ ∈ Cj ]

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

︸ ︷︷ ︸

≤0

∣
∣+ |SOMS2(Cj − {i, ℓ})| |cij |

)

.

By Propositions C.14 and C.15, 0 < SOMS2(Γ) ≤ 1/2 for all Γ ⊆ C, and so

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

ℓ∈C
ℓ6=i

∑

j∈Vi

[ℓ ∈ Cj ]

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

.

Furthermore, because these two finite sums can be transposed,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi

∑

ℓ∈C
ℓ6=i

[ℓ ∈ Cj ]

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

=
∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)
∑

ℓ∈C
ℓ6=i

[ℓ ∈ Cj ].

Hence, the second sum is a count of all elements in (C − {i}) ∩ Cj . That is,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

|{ℓ ∈ C : ℓ ∈ Cj − {i}}|
︸ ︷︷ ︸

Number of non-i cooperators

connected to j

=
∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

|Cj − {i}| ,

and, because j ∈ Vi if and only if i ∈ Cj ,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

(|Cj | − 1) .

However, by assumption (ii), each conveyor j ∈ V has no more than three outgoing connections to
cooperators (i.e., |Cj | ≤ 3). Additionally, by assumption (iii), if j ∈ Vi is a 3-conveyor (i.e., it has
3 outgoing cooperator connections), then there must be some other conveyor m ∈ Vi − {j} that is
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a 2-conveyor. So, letting m ∈ Vi be the 2-conveyor that is guaranteed to exist,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

Doubled contribution to sum from
other cooperators connected to

assumed 3-conveyors in Vi − {m}
︷ ︸︸ ︷

2
∑

j∈Vi−{m}

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

︸ ︷︷ ︸

≤0

∣
∣+

1

2
|cij |

)

+

Contribution to sum from
other cooperator of 2-conveyor m ∈ Vi
︷ ︸︸ ︷
∣
∣p′im(Qm) + γip

′′
im(Qm)

︸ ︷︷ ︸

≤0

∣
∣+

1

2
|cim|

= 2
∑

j∈Vi−{m}

(

−
(
p′ij(Qj) + γip

′′
ij(Qj)

)

︸ ︷︷ ︸

≥0

+
1

2
|cij |

)

−
(
p′im(Qm) + γip

′′
im(Qm)

)

︸ ︷︷ ︸

≥0

+
1

2
|cim|

=
∑

j∈Vi−{m}

(

−
(
2p′ij(Qj) + 2γip

′′
ij(Qj)

)
+ |cij |

)

−
(
p′im(Qm) + γip

′′
im(Qm)

)
+

1

2
|cim|

=
∑

j∈Vi−{m}

(

−
(

2p′ij(Qj) + γip
′′
ij(Qj) + γip

′′
ij(Qj)

)

+ |cij |

)

− (p′im(Qm) + γip
′′
im(Qm)) +

|cim|

2

=
∑

j∈Vi−{m}

(

−
(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+ |cij |

)

−

≥0
︷ ︸︸ ︷
∑

j∈Vi−{m}

γip
′′
ij(Qj)

−
(
p′im(Qm) + γip

′′
im(Qm)

)
+

|cim|

2
,

and so, due to the convexity of stabilizing payment functions,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi−{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+

∑

j∈Vi−{m}

|cij | −
(
p′im(Qm) + γip

′′
im(Qm)

)
+

|cim|

2

= −
∑

j∈Vi−{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
−
(
p′im(Qm) + γip

′′
im(Qm)

)
+

∑

j∈Vi−{m}

|cij |+
|cim|

2
.

Because A is finite, Vi ⊆ A is finite, and so

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi−{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
−
(
p′im(Qm) + γip

′′
im(Qm)

)
+

(

|

m∈Vi
︷ ︸︸ ︷

Vi − {m}|+
1

2

)

max
j∈Vi

|cij |

= −
∑

j∈Vi−{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
−
(
p′im(Qm) + γip

′′
im(Qm)

)
+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |,

and

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi−{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
−
(
p′im(Qm) + γip

′′
im(Qm)

)
+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |.

So, by expanding the index set of the summation to include m ∈ Vi and subtracting the new term
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outside the summation,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+
(
2p′im(Qm) + γip

′′
im(Qm)

)
−
(
p′im(Qm) + γip

′′
im(Qm)

)

+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

= −

∇2

iiUi(γ)
︷ ︸︸ ︷
∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+

<0
︷ ︸︸ ︷

p′im(Qm) +

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

= −∇2
iiUi(γ)− |p′im(Qm)|+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

≤ −∇2
iiUi(γ)−min

j∈Vi

|p′ij(Qj)|+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

= −∇2
iiUi(γ)−

(

min
j∈Vi

|p′ij(Qj)| −

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

)

︸ ︷︷ ︸

> 0 by Expression (2.8)

.

So, by the assumption in Expression (2.8), the underbraced expression is strictly greater than zero.
Hence,

∑

ℓ∈C
ℓ6=i

∣
∣∇2

iℓUi(γ)
∣
∣ < −∇2

iiUi(γ). (B.6)

Furthermore, by the bounds on ∇2
iiUi(γ) in Expression (B.4),

−
1

σi
≤ ∇2

iiUi(γ) +
∣
∣∇2

iℓUi(γ)
∣
∣ < 0.

Hence, following Expression (B.5),

‖T (x)− T (y)‖∞ ≤ max
i∈C

max
z∈[0,1]n

(

1 + σi

(

∈
[

−
1
σi

,0
)

︷ ︸︸ ︷

∇2
iiUi(z) +

∑

ℓ∈C
ℓ6=i

|∇2
iℓUi(z)|

︸ ︷︷ ︸

∈[−1,0)

)

︸ ︷︷ ︸

∈[0,1)

)

︸ ︷︷ ︸

,α∈[0,1)

‖x− y‖∞,

So there is an α ∈ [0, 1) such that

‖T (x)− T (y)‖∞ ≤ α‖x− y‖∞.

Thus, the projection mapping T is a contraction mapping with modulus α. By Proposition D.2(a),
there exists a unique γ∗ ∈ [0, 1]n such that T (γ∗) = γ∗ (i.e., γ∗ is a fixed point of the contraction
T ). Further, convergence of the sequence {γ(t)}t∈T generated by the TADI iteration mapping T
in Expression (2.7) to γ∗ is guaranteed by Proposition D.14. In particular, the sequence of sets
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{X (k)}k∈W defined, for all k ∈ W, by

X (k) ,
{
γ ∈ [0, 1]n : ‖γ − γ∗‖∞ ≤ αk‖γ(0)− γ∗‖∞

}

=
{
(γc1 , γc2 , . . . , γcn) ∈ [0, 1]n : |γi − γ∗i | ≤ αk max

j∈C
|γj(0)− γ∗j | for all i ∈ C

}

=
∏

i∈C

{γi ∈ [0, 1] : |γi − γ∗i | ≤ αk max
j∈C

|γj(0)− γ∗j |}

︸ ︷︷ ︸

,Xi(k)

meets the general (i.e., asynchronous) convergence conditions given in Proposition D.12 that:

(i) For each i ∈ C and k ∈ W, · · · ⊂ Xi(k + 1) ⊂ Xi(k) ⊂ · · · ⊂ Xi(0) ⊆ [0, 1]. Additionally,
γ(0) ∈ X (0).

(ii) For all k ∈ W and all γ ∈ X (k), T (γ) ∈ X (k + 1). Additionally, if {yk} is a sequence such

that yk ∈ X (k) for every k ∈ W, then limk→∞ yk = γ∗, which is the fixed point of the TADI
mapping T .

Additionally, for any ε, there exists a k ∈ W such that X (k) ⊆ B∞
ε (γ∗) where open ball B∞

ε (γ∗) ,
{γ ∈ [0, 1]n : ‖γ − γ∗‖∞ < ε}. So, by Proposition D.13, the TADI-generated sequence {γ(t)} and
the outdated estimate sequences {γi(t)} for all i ∈ C each converge to fixed point γ∗. The sets
X (k) for all k ∈ W are analogous to level sets of a Lyapunov function; they guarantee the continual
reduction of the distance between the asynchronous algorithm’s trajectory and the fixed point γ∗.
By Proposition D.11, the fixed point γ∗ that {γ(t)} converges to is the unique solution to the
separable variational inequality problem in Expression (2.3). By Proposition D.10, the variational
inequality solution γ∗ is the Nash equilibrium of the cooperation game.

Proposition B.2. (Sufficient condition for diagonal dominance) For all i ∈ C, if step size σi is
such that

From Expression (2.7)
︷ ︸︸ ︷

1

σi
≥ 2|Vi|max

k∈Vi

|p′ik(0)| (B.7a)

and

2min
j∈Vi

|p′ij(|Cj |)| >




1

σimax
k∈Vi

|p′ik(0)|
− 1



max
j∈Vi

|cij |, (B.7b)

then

min
j∈Vi

|p′ij(|Cj |)| >

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

︸ ︷︷ ︸

Expression (2.8)

for all i ∈ C.

Proof of Proposition B.2. By Expression (B.7a), for all i ∈ C,

1

σimax
k∈Vi

|p′ik(0)|
≥ 2|Vi|,

and so Expression (B.7b) implies

2min
j∈Vi

|p′ij(|Cj |)| > (2|Vi| − 1)max
j∈Vi

|cij | for all i ∈ C.

Hence,

min
j∈Vi

|p′ij(|Cj |)| >

(

|Vi| −
1

2

)

max
j∈Vi

|cij |for all i ∈ C.
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C Combinatorics applied to volunteering

The principal results used in this work are Propositions C.11, C.14, and C.15, which follow primarily
from Theorems C.1, C.2, and C.3. These results serve to assist in the analysis of volunteering
problems like the one given in Example C.1.

Example C.1. (Volunteering) You are going to volunteer for a job. Two other individuals will
volunteer (independently) with probabilities γ1 and γ2, respectively. If n ∈ {1, 2, 3} individuals
volunteer, any one of them will be asked to complete the job with uniform probability 1/n. Given
that you volunteer, the probability that you will be asked to do the job is

(1− γ1) (1− γ2) +
1

2
γ1 (1− γ2) +

1

2
(1− γ1) γ2 +

1

3
γ1γ2. (C.1)

That is, given that you volunteer, there is a 1/(k+1) probability that you will be asked to complete
the job when k ∈ {0, 1, 2} other individuals also volunteer.

The probability in Expression (C.1) from Example C.1 matches the SOBP expression in Expres-
sion (C.3) from Definition C.1 below with g = 1, Ω = {γi}i∈{1,2}, and Γ = {1, 2}.

C.1 Definitions: SOBP and SOMS

In the following, let I ⊂ W be a finite index set, and let

Ω , {γi}i∈I (C.2)

be an indexed family with where γi ∈ X ⊆ R for each i ∈ I.

Definition C.1. (Sum of binomial products) For Γ ⊆ I, g ∈ N, and m , |Γ|, the sum of binomial
products

SOBPg(Γ) ,
1

g

∏

i∈Γ

(1− γi)

+
1

g + 1

∑

i∈Γ



γi
∏

j∈Γ−{i}

(1− γj)





+
1

g + 2

∑

{i,j}⊆Γ



γiγj
∏

k∈Γ−{i,j}

(1− γk)





+ · · ·

+
1

g + ℓ

∑

C⊆Γ
|C|=ℓ

((
∏

i∈C

γi

)(
∏

k∈Γ−C

(1− γk)

))

+ · · ·

+
1

g +m

∏

i∈Γ

γi,

(C.3)

and g is called the seed.
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Definition C.2. (Sum of monomial sums) For Γ ⊆ I, h ∈ N, and m , |Γ|, the sum of monomial
sums

SOMSh(Γ) ,
1

h
−

1

h+ 1

∑

i∈Γ

γi +
1

h+ 2

∑

{i,j}⊆Γ

γiγj

− . . . +− . . . + (−1)ℓ
1

h+ ℓ

∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

− . . . +− . . .

+ (−1)m
1

h+m

∏

i∈Γ

γi,

(C.4)

and h is called the seed.

The following sections provide the analytical tools to relate SOBP to SOMS. Hence, they
provide a framework in which to analyze volunteering problems like Example C.1.

C.2 Coordinate transformation

Proposition C.1. (Binomial theorem) For a, b ∈ R and n ∈ W,

(a+ b)n =

1
︷ ︸︸ ︷
(
n

0

)

an +

(
n

1

)

an−1b1 +

(
n

2

)

an−2b2 + · · ·+

(
n

k

)

an−kbk + · · ·+

1
︷ ︸︸ ︷
(
n

n

)

bn

=
n∑

k=0

(
n

k

)

an−kbk

(C.5)

where, for all r ∈ {0, 1, . . . , n},
(
n
r

)
, n!/(r!(n− r)!).

Proof of Proposition C.1 is given by Gustafson et al. [24].

Remark (Simple binomial theorem) Let x ∈ R and n ∈ W. Then, by Proposition C.1,

(1 + x)n =

(
n

0

)

+

(
n

1

)

x1 +

(
n

2

)

x2 + · · ·+

(
n

n− 1

)

xn−1 +

(
n

n

)

xn =
n∑

k=0

(
n

k

)

xk (C.6)

Proposition C.2. (Product of binomials) For a set Γ ⊆ I,

∏

i∈Γ

(1− γi) =
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi

= 1−
∑

i∈Γ

γi +
∑

{i,j}⊆Γ

γiγj −
∑

{i,j,k}⊆Γ

γiγjγk + · · ·+ (−1)ℓ
∑

C⊆Γ
|C|=ℓ

∏

i∈C

γi + · · ·+ (−1)|Γ|
∏

i∈Γ

γi.

(C.7)

Proof of Proposition C.2. The claim in Expression (C.7) is trivially true for Γ = ∅ (i.e., when
|Γ| = 0 and |℘(Γ)| = |{∅}| = 1). For the purpose of induction, assume that the claim is true for
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Γ ⊆ I with |Γ| = k ∈ {0, 1, . . . , n− 1} and maxΓ ≤ min(I − Γ). Let j = min(I − Γ). Then

∏

i∈Γ∪{j}

(1− γi) = (1− γj)
∏

i∈Γ

(1− γi)

= (1− γj)
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi

=
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi − γj
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi

=
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi

︸ ︷︷ ︸

Combinations of Γ

+
∑

C⊆Γ

(−1)|C|+1
∏

i∈C

γiγj

︸ ︷︷ ︸

Combinations of Γ also including j

=
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi +
∑

C⊆Γ

(−1)|C|+1
∏

i∈C∪{j}

γi

=
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi

︸ ︷︷ ︸

Combinations of
Γ ∪ {j} without j

+
∑

C0⊆Γ
C=C0∪{j}

(−1)|C|
∏

i∈C

γi

︸ ︷︷ ︸

Combinations of Γ ∪ {j} with j

=
∑

C⊆(Γ∪{j})

(−1)|C|
∏

i∈C

γi,

and so the claim is also true for the k+1 case. Hence, because the claim is true for the k = 0 case,
it is true for all k ∈ {0, 1, . . . , n} by induction.

Proposition C.3. (Sum of mixed product) Let Γ ⊆ I, m , |Γ|, and ℓ ∈ {0, 1, . . . ,m}. Then

∑

C⊆Γ
|C|=ℓ

((
∏

i∈C

γi

)(
∏

k∈Γ−C

(1− γk)

))

=
∑

C⊆Γ
|C|≥ℓ

(

(−1)|C|−ℓ

(
|C|

ℓ

)
∏

i∈C

γi

)

=

(
ℓ

ℓ

)
∑

C⊆Γ
|C|=ℓ

∏

i∈C

γi +

(
ℓ+ 1

ℓ

)
∑

C⊆Γ
|C|=ℓ+1

∏

i∈C

γi + · · ·+

(
m− 1

ℓ

)
∑

C⊆Γ
|C|=m−1

∏

i∈C

γi +

(
m

ℓ

)
∏

i∈Γ

γi.

(C.8)
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Proof of Proposition C.3. By Proposition C.2,

∑

C⊆Γ
|C|=ℓ

((
∏

i∈C

γi

)(
∏

k∈Γ−C

(1− γk)

))

=
∑

C⊆Γ
|C|=ℓ





(
∏

i∈C

γi

)


∑

D⊆(Γ−C)

(−1)|D|
∏

k∈D

γk









=
∑

C⊆Γ
|C|=ℓ




∑

D⊆(Γ−C)

(−1)|D|

(
∏

i∈C

γi

)
∏

k∈D

γk





=
∑

C⊆Γ
|C|=ℓ




∑

D⊆(Γ−C)

(−1)|D|
∏

i∈D∪C

γi





=
∑

C⊆Γ
|C|=ℓ

∑

E⊆Γ
C⊆E

(

(−1)|E|−ℓ
∏

i∈E

γi

)

︸ ︷︷ ︸

Each E ⊆ Γ repeats

for every C ⊆ E set

=
∑

E⊆Γ
|E|≥ℓ

(−1)|E|−ℓ

(
|E|

ℓ

)
∏

i∈E

γi

Theorem C.1. (Binomial–monomial relationship) Let Γ ⊆ I, m , |Γ|, and ak ∈ R for all
k ∈ {0, 1, . . . ,m}. The expression

a0
∏

i∈Γ

(1− γi)

+ a1
∑

i∈Γ



γi
∏

j∈Γ−{i}

(1− γj)





+ a2
∑

{i,j}⊆Γ



γiγj
∏

k∈Γ−{i,j}

(1− γk)





+ · · ·

+ aℓ
∑

C⊆Γ
|C|=ℓ

((
∏

i∈C

γi

)(
∏

k∈Γ−C

(1− γk)

))

+ · · ·

+ am
∏

i∈Γ

γi,

(C.9a)
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is equal to

b0
︷︸︸︷
a0 −

b1
︷ ︸︸ ︷

(a0 − a1)
∑

i∈Γ

γi +

b2
︷ ︸︸ ︷

2∑

k=0

(
2

k

)

(−1)kak
∑

{i,j}⊆Γ

γiγj

− . . . +− . . . + (−1)ℓ
ℓ∑

k=0

(
ℓ

k

)

(−1)kak

︸ ︷︷ ︸

bℓ

∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

− . . . +− . . . + (−1)m
m∑

k=0

(
m

k

)

(−1)kak

︸ ︷︷ ︸

bm

∏

i∈Γ

γi,

(C.9b)

where

bℓ ,
ℓ∑

k=0

(
ℓ

k

)

(−1)kak (C.9c)

is the coefficient that corresponds to the sum of monomials with ℓ ∈ {0, 1, . . . ,m} factors.

Proof of Theorem C.1. Applying Proposition C.3 to expand each row of Expression (C.9a) yields

a0

(

1 −
∑

i∈Γ

γi +
∑

{i,j}∈Γ

γiγj −
∑

{i,j,k}∈Γ

γiγjγk + · · · −+ · · · + (−1)m
∏

i∈Γ

γi

)

+ a1

(
∑

i∈Γ

γi −

(
2

1

)
∑

{i,j}∈Γ

γiγj +

(
3

1

)
∑

{i,j,k}∈Γ

γiγjγk − · · · +− · · · − (−1)m
(
m

1

)
∏

i∈Γ

γi

)

+ a2

(

+

(
2

2

)
∑

{i,j}∈Γ

γiγj −

(
3

2

)
∑

{i,j,k}∈Γ

γiγjγk + · · · −+ · · · + (−1)m
(
m

2

)
∏

i∈Γ

γi

)

+ · · ·

+ am

( (
m

m

)
∏

i∈Γ

γi

)

.

The expansion is a sum of monomial sums, each of which is a product of 0 to m elements of Γ. The
row that is multiplied by ak will contribute

(
ℓ
k

)
of each monomial with ℓ factors. For example, the

three-factor monomial γaγbγc (i.e., ℓ = 3) can be generated in the a2 row (i.e., k = 2) by

γaγb(1− γc) . . . , γaγc(1− γa) . . . , or γbγc(1− γa) . . . ,

and so the a2 row will contribute
(
3
2

)
= 3 of this monomial that each have a weight of −a2. The

expression in Expression (C.9b) results from summing the elements of each column of the expansion
above.

Remark (Coordinate transformation) The relationship in Expression (C.9c) is a coordinate trans-
formation from (a1, a2, . . . , am) in SOBP space to (b1, b2, . . . , bm) in SOMS space.

Proposition C.4. (Lower bound) Let X ⊆ [0, 1] in Expression (C.2). If ak ≥ 0 for all k ∈
{1, . . . , |Γ|}, then both Expressions (C.9a) and (C.9b) are greater than or equal to min{ak : k ∈
{0, 1, . . . , |Γ|}}.
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Proof. Let a , min{ak : k ∈ {0, 1, . . . , |Γ|}}, S be the series in Expression (C.9a) with ak as
given, and let Y be the series in Expression (C.9a) with ak = a. Because γi ∈ [0, 1] for all i ∈ I,
then Y ≤ S. Moreover, by Theorem C.1, the bounding series Y can be written in the form of
Expression (C.9b) with

bℓ =

By Proposition C.1 (i.e., binomial theorem)
︷ ︸︸ ︷

a
ℓ∑

k=0

(
ℓ

k

)

(−1)k = a(1 + (−1))ℓ = a× 0ℓ =

{

a if ℓ = 0,

0 if ℓ > 0.

So Y = a and, by Theorem C.1, Expression (C.9a) and the corresponding Expression (C.9b) are
both greater than or equal to Y = a.

Proposition C.5. (Upper bound) Let X ⊆ [0, 1] in Expression (C.2). If ak ≥ 0 for all k ∈
{1, . . . , |Γ|}, then both Expressions (C.9a) and (C.9b) are less than or equal to max{ak : k ∈
{0, 1, . . . , |Γ|}}.

Proof. Let a , max{ak : k ∈ {0, 1, . . . , |Γ|}}, S be the series in Expression (C.9a) with ak as
given, and let Y be the series in Expression (C.9a) with ak = a. Because γi ∈ [0, 1] for all i ∈ I,
then Y ≥ S. Moreover, by Theorem C.1, the bounding series Y can be written in the form of
Expression (C.9b) with

bℓ =

By binomial theorem
︷ ︸︸ ︷

a
ℓ∑

k=0

(
ℓ

k

)

(−1)k = a(1 + (−1))ℓ = a× 0ℓ =

{

a if ℓ = 0,

0 if ℓ > 0,

where the replacement is justified by Proposition C.1 (i.e., the binomial theorem). So Y = a and,
by Theorem C.1, Expression (C.9a) and the corresponding Expression (C.9b) are both less than or
equal to Y = a.

Proposition C.6. (SOBP lower bound) Let X ⊆ [0, 1] in Expression (C.2). For Γ ⊆ I and g ∈ N,
SOBPg(Γ) ≥ 1/(g +m) where m , |Γ|.

Proof of Proposition C.6. Apply Proposition C.4 with ak , 1/(g+k) for all k ∈ {0, 1, . . . , |Γ|}.

Proposition C.7. (SOBP upper bound) Let X ⊆ [0, 1] in Expression (C.2). For Γ ⊆ I and
g ∈ N, SOBPg(Γ) ≤ 1/g.

Proof of Proposition C.7. Apply Proposition C.5 with ak , 1/(g+k) for all k ∈ {0, 1, . . . , |Γ|}.

C.3 Translating SOBP to SOMS

Proposition C.8. (Regrouping by monomials) Let Γ ⊆ I, m , |Γ|, and g ∈ N. Then SOBPg(Γ)
is equal to

1

g
︸︷︷︸

b0

−
1∑

k=0

(−1)k

k + g
︸ ︷︷ ︸

b1

∑

i∈Γ

γi+
2∑

k=0

(−1)k

k + g

(
2

k

)

︸ ︷︷ ︸

b2

∑

{i,j}⊆Γ

γiγj− . . . +− . . .+(−1)m
m∑

k=0

(−1)k

k + g

(
m

k

)

︸ ︷︷ ︸

bm

∏

i∈Γ

γi (C.10)
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where

bℓ ,
ℓ∑

k=0

(−1)k

k + g

(
ℓ

k

)

(C.11)

is the underbraced coefficient corresponding to the sum of monomials with ℓ ∈ {0, 1, . . . ,m} factors.

Proof of Proposition C.8. Apply Theorem C.1 with ak , 1/(k + g) for all k ∈ {0, 1, . . . ,m}.

Proposition C.9. (General SOBP weight expression) For ℓ ∈ W and g ∈ N,

ℓ∑

k=0

(−1)k

k + g

(
ℓ

k

)

=
ℓ!(g − 1)!

(g + ℓ)!
.

Proof of Proposition C.9.

ℓ∑

k=0

(−1)k

k + g

(
ℓ

k

)

=
ℓ∑

k=0

(−1)k

k + g

ℓ!

k!(ℓ− k)!
=

ℓ∑

k=0

ℓ!

(k + g)k!(ℓ− k)!
(−1)k

=
ℓ∑

k=0

ℓ!

(k + g)(k + g − 1)!(ℓ− k)!

(k + g − 1)!

k!
(−1)k

=
ℓ!

(ℓ+ g)!

ℓ∑

k=0

(ℓ+ g)!

(k + g)!(ℓ+ g − (k + g))!

(k + g − 1)!

k!
(−1)k

=
ℓ!

(ℓ+ g)!

ℓ∑

k=0

(
ℓ+ g

k + g

)
(k + g − 1)!

k!
(−1)k

=
ℓ!

(ℓ+ g)!

ℓ∑

k=0

(
ℓ+ g

k + g

)
(k + g − 1)!

k!
xk

∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

ℓ∑

k=0

(ℓ+ g)!

(k + g)!(ℓ+ g − (k + g))!

(k + g − 1)!

k!
xk

∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

ℓ+g−1
∑

k=g−1

(ℓ+ g)!

(k + 1)!(ℓ+ g − (k + 1))!

k!

(k − (g − 1))!
xk−(g−1)

∣
∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

ℓ+g−1
∑

k=g−1

(
ℓ+ g

k + 1

)
k!

(k − (g − 1))!
xk−(g−1)

∣
∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

dg−1

dxg−1

ℓ+g−1
∑

k=0

(
ℓ+ g

k + 1

)

xk

∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

dg−1

dxg−1

(
ℓ+g−1
∑

k=−1

(
ℓ+ g

k + 1

)

xk −

(
ℓ+ g

0

)
1

x

)∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

(

dg−1

dxg−1

1

x

ℓ+g
∑

k=0

(
ℓ+ g

k

)

xk −
dg−1

dxg−1

1

x

)∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

(
dg−1

dxg−1

(1 + x)ℓ+g

x
− (−1)g−1 (g − 1)!

xg

)∣
∣
∣
∣
x=−1
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which is justified by Proposition C.1 (i.e., the binomial theorem). The right-hand side of this
equation is equal to

ℓ!(g − 1)!

(ℓ+ g)!
.

Theorem C.2. (Transformation of SOBP) Let Γ ⊆ I, m , |Γ|, and g ∈ N. Then SOBPg(Γ) is
equal to

1

g
︸︷︷︸

b0

−
1

(g + 1)g
︸ ︷︷ ︸

b1

∑

i∈Γ

γi +
2

(g + 2)(g + 1)g
︸ ︷︷ ︸

b2

∑

{i,j}∈Γ

γiγj − . . . +− . . . + (−1)m
m!(g − 1)!

(g +m)!
︸ ︷︷ ︸

bm

∏

i∈Γ

γi. (C.12)

Proof of Theorem C.2. Apply Proposition C.9 to Proposition C.8.

Proposition C.10. (Seed-1 case) Let Γ ⊆ I. Then

SOBP1(Γ) = SOMS1(Γ). (C.13)

Proof of Proposition C.10. By applying Theorem C.2 with g = 1,

SOBP1(Γ) = 1−
1

2

∑

i∈Γ

γi +
1

3

∑

{i,j}⊆Γ

γiγj − . . . +− . . . + (−1)m
1

m+ 1

∏

i∈Γ

γi = SOMS1(Γ).

Proposition C.11. (Seed-1 SOBP derivative) Let Γ ⊆ I and k ∈ Γ. Then

∂

∂γk
SOBP1(Γ) = − SOMS2(Γ− {k}). (C.14)

Proof of Proposition C.11. Let m , |Γ|. By Proposition C.10,

∂

∂γk
SOBP1(Γ)

=
∂

∂γk



1−
1

2

∑

i∈Γ

γi +
1

3

∑

{i,j}⊆Γ

γiγj − . . . +− . . . + (−1)m
1

m+ 1

∏

i∈Γ

γi





= −




1

2

∑

i∈(Γ−{k})

γi −
1

3

∑

{i,j}⊆(Γ−{k})

γiγj + . . . −+ . . . − (−1)m−1 1

2 + (m− 1)

∏

i∈(Γ−{k})

γi





= − SOMS2(Γ− {k})

C.4 Bounding SOMS

Proposition C.12. (SOMS weight expression) For ℓ ∈ W and h ∈ N,

ℓ∑

k=0

(
ℓ

k

)

(−1)k
k!(h− 1)!

(k + h)!
=

1

ℓ+ h
. (C.15)
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Proof of Proposition C.12.

ℓ∑

k=0

(
ℓ

k

)

(−1)k
k!(h− 1)!

(k + h)!
=

ℓ∑

k=0

ℓ!

k!(ℓ− k)!
(−1)k

k!(h− 1)!

(k + h)!

= ℓ!(h− 1)!
ℓ∑

k=0

(−1)k

(k + h)!(ℓ− k)!

= ℓ!
h!

h

(
1

h!

1

ℓ!
−

1

(h+ 1)h!

1

(ℓ− 1)!
+ . . . −+ . . . +

(−1)ℓ

(ℓ+ h)!

)

=

(
1

h
−

ℓ

(h+ 1)h
+

ℓ(ℓ− 1)

(h+ 2)(h+ 1)h
− . . . +− . . . +

(−1)ℓℓ!(h− 1)!

(ℓ+ h)!

)

=

(
1

h
−

ℓ

h

(
1

h+ 1
−

ℓ− 1

h+ 1

(
1

h+ 2
− · · ·

)))

= f0

where

fk ,
1

h+ k
−

ℓ− k

h+ k
fk+1. (C.16)

Clearly, fℓ = 1/(h+ ℓ). By Expression (C.16), if fk = 1/(h+ ℓ) for some k ∈ {1, . . . , ℓ}, then

fk−1 =
1

h+ k − 1
−

ℓ− k + 1

h+ k − 1
fk =

1

h+ k − 1
−

ℓ− k + 1

h+ k − 1

1

h+ ℓ

=
(h+ ℓ)− (ℓ− k + 1)

(h+ k − 1)(h+ ℓ)
=

h+ k − 1

(h+ k − 1)(h+ ℓ)
=

1

h+ ℓ
.

By induction, Expression (C.16) is true for all k ∈ {0, 1, . . . , ℓ}, and so f0 = 1/(ℓ+ h).

Theorem C.3. (Transformation of SOMS) Let Γ ⊆ I, m , |Γ|, and h ∈ N. Then SOMSh(Γ) is
equal to

1

h

∏

i∈Γ

(1− γi)

+
1

(h+ 1)h

∑

i∈Γ



γi
∏

j∈(Γ−{i})

(1− γj)





+
2

(h+ 2)(h+ 1)h

∑

{i,j}⊆Γ



γiγj
∏

k∈(Γ−{i,j})

(1− γk)





+ · · ·

+
m!(h− 1)!

(h+m)!

∏

i∈Γ

γi.

32



C COMBINATORICS APPLIED TO VOLUNTEERING

Proof of Theorem C.3. By definition,

SOMSh(Γ) ,
1

h
−

1

h+ 1

∑

i∈Γ

γi +
1

h+ 2

∑

{i,j}⊆Γ

γiγj

− . . . +− . . . + (−1)ℓ
1

h+ ℓ

∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

− . . . +− . . .

+ (−1)m
1

h+m

∏

i∈Γ

γi,

but, by Proposition C.12,

1

h+ ℓ
=

ℓ∑

k=0

(
ℓ

k

)

(−1)k
k!(h− 1)!

(k + h)!
,

and so Theorem C.1 applies with

bℓ =
ℓ∑

k=0

(
ℓ

k

)

(−1)k
k!(h− 1)!

(k + h)!
︸ ︷︷ ︸

ak

for each ℓ ∈ {0, 1, . . . ,m} and ak , k!(h− 1)!/(k + h)! for each k ∈ {0, 1, . . . ,m}.

Proposition C.13. (Coefficient montonocity) Take m ∈ W and h ∈ N. Let

ak ,
k!(h− 1)!

(h+ k)!
=

k!

(h+ k)(h+ k − 1) · · · (h+ 1)(h)
=

1

h

k∏

i=1

i

h+ i
.

Then a0 > a1 > a2 > · · · > am > 0.

Proof of Proposition C.13. Because h ≥ 1,

a1 =
1

h

1

h+ 1
<

1

h
= a0.

Assuming that ak < ak−1 for some k ∈ {1, 2, . . . ,m}, then

ak+1 = ak
1

h+ k
< ak

because h ≥ 1 and k ≥ 1. Hence, ak ≥ ak+1 for all k ∈ {0, 1, . . . ,m − 1} by induction. Further,
because am is a product of strictly positive factors, ak > 0 for all k ∈ {0, 1, . . . ,m}.

Proposition C.14. (SOMS lower bound) Let X ⊆ [0, 1] in Expression (C.2). For Γ ⊆ I and
h ∈ N,

SOMSh(Γ) ≥
m!(h− 1)!

(h+m)!
=

m!

(h+m)(h+m− 1) · · · (h+ 1)h
=

1

h

m∏

k=1

k

h+ k

where m , |Γ|.
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Proof of Proposition C.14. Apply Theorem C.3 to SOMSh(Γ) and then, using the greatest lower
bound implied from Proposition C.13, apply Proposition C.4 with ak , k!(h − 1)!/(h + k)! for all
k ∈ {0, 1, . . . , |Γ|}.

Proposition C.15. (SOMS upper bound) Let X ⊆ [0, 1] in Expression (C.2). For Γ ⊆ I and
h ∈ N, SOMSh(Γ) ≤ 1/h.

Proof of Proposition C.15. Apply Theorem C.3 to SOMSh(Γ) and then, using the upper bound
implied from Proposition C.13, apply Proposition C.5 with ak , k!(h − 1)!/(h + k)! for all k ∈
{0, 1, . . . , |Γ|}.
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D Parallel and distributed computation

Unless otherwise noted, the following results and definitions are either taken from, based upon, or
highly influenced by Bertsekas and Tsitsiklis [8].

D.1 Vector spaces

In a vector space V ⊆ Rn, a ∈ R is a scalar and v ∈ V is a vector with elements that might be shown
in coordinate notation as (v1, v2, . . . , vn) or in vector notation as [v1, v2, . . . , vn]

⊤ where ⊤ indicates
an element-wise row–column transposition. In the case where vector space V is a Cartesian product
of other vector spaces, the elements (or coordinates) of vector v ∈ V may themselves be vectors
(e.g., v1 ∈ V1 where V = V1 × V2).

The topology of each vector space (i.e., the definition of its open sets) is induced from a metric
(i.e., a measure of distance between points) that is induced from a norm (i.e., a measure of the
length of a vector). The standard 1-norm, 2-norm, and maximum norms are used. Any other
norms will be defined as necessary.

Assumption D.1. (Cartesian product assumption) Without loss of generality, represent the Eu-
clidean space Rn as the Cartesian product Rn1×Rn2×· · ·×Rnm where n1+ · · ·+nm = n and ni ≥ 1
for each i ∈ {1, 2, . . . ,m}. Hence, a vector x ∈ Rn will be represented as (x1, x2, . . . , xm) where
xi , (xi1, xi2, . . . , xini

) ∈ Rni for each i ∈ {1, . . . ,m}. Assume that set X ⊆ Rn is the Cartesian
product X1 × X2 × · · · × Xm, where Xi is a nonempty subset of Rni for each i ∈ {1, . . . ,m}. Like-
wise, a vector x ∈ X will be represented as (x1, x2, . . . , xm) where xi ∈ Xi for each i ∈ {1, . . . ,m}.
Assume that subspace Rni is endowed with norm ‖·‖i for each i ∈ {1, 2, . . . ,m}.

Definition D.1. (Block-maximum norm) Take Assumption D.1 for granted (i.e., X ⊆ Rn is a
special Cartesian product of normed spaces). The block-maximum norm on Rn for a vector x ∈ X
is

‖x‖ , max{‖xi‖i : i ∈ {1, 2, . . . ,m}}.

Definition D.2. (Induced matrix norm for product spaces) Without loss of generality, represent
the Euclidean space Rn as the Cartesian product Rn1 × Rn2 × · · · × Rnm where n1 + · · · + nm =
n. Hence, a vector x ∈ Rn will be represented as (x1, x2, . . . , xm) where xi ∈ Rni for each i ∈
{1, . . . ,m}. Assume that subspace Rni is endowed with norm ‖·‖i for each i ∈ {1, 2, . . . ,m}. For
any matrix A of dimension ni × nj , the induced matrix norm

‖A‖ij , max

{
‖Ax‖i
‖x‖j

: x ∈ Rnj , x 6= 0

}

= max {‖Ax‖i : x ∈ Rnj , ‖x‖j = 1} .

This definition matches the general definition for induced matrix norms of arbitrary matrices.
However, the norm desired for each vector subspace block is made explicit in the notation. That
is, the two subscripts indicate the two different norms to be used.

D.2 Functional analysis

Here, definitions and useful results from basic functional analysis are given. Because results will
be used in the context of a subspace of the Euclidean Rn space that has several norms available
to it, the following definitions implicitly assume that a sufficient topology (i.e., defined open sets)
can be induced from a metric that is induced from a norm. Results and definitions are taken from
Rudin [45] and Bertsekas and Tsitsiklis [8].
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Definition D.3. (Differentiable vector-valued functions) For X ⊆ Rn, if f : X 7→ Rm is a vector-
valued function where f , (f1, f2, . . . , fm), it is called differentiable if each component fi : X 7→ R

of f is differentiable. Similarly, a vector-valued function is continuously differentiable if each of its
components are continuously differentiable.

Definition D.4. (Gradient) For X ⊆ Rn, the gradient of scalar-valued continuously differentiable
function f : X 7→ R at a point x , (x1, x2, . . . , xn) ∈ X is the column vector

∇f(x) ,









∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn









.

Definition D.5. (Jacobian) For X ⊆ Rn, the Jacobian of vector-valued continuously differentiable
function f : X 7→ Rm defined with f , (f1, f2, . . . , fm) at a point x ∈ X is the transpose of the
matrix

∇f(x) ,
[
∇f1(x) ∇f2(x) · · · ∇fm(x)

]

which is a collection of gradients. Hence, because the Jacobian is (∇f(x))⊤, the entry in its ith row
and jth column is the partial derivative ∂fi/∂fj evaluated at the point x.

Definition D.6. (Hessian) Take X ⊆ Rn and scalar-valued continuously differentiable function
f : X 7→ R at point x ∈ X . If vector-valued gradient ∇f : Rn 7→ Rn is continuously differentiable
at x , (x1, x2, . . . , xn) ∈ X , then the Hessian of f at x is

∇2f(x) , ∇∇f(x) =










∂2f(x)

∂x1
2

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x1∂x2

∂2f(x)

∂x2
2 · · · ∂2f(x)

∂xn∂x2

...
...

. . .
...

∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂xn

· · · ∂2f(x)

∂xn
2










.

That is, the Hessian is the transpose of the Jacobian of the gradient.

Remark (Symmetric Hessian) The Hessian is defined for a scalar-valued continuously differentiable
function whose vector-valued gradient is also continuously differentiable; hence, by continuity of
the partial derivatives in the Hessian, the Hessian matrix will be symmetric. So the Hessian is the
Jacobian of the gradient.

Definition D.7. (Block gradient in Cartesian product space) Take Assumption D.1 for granted
(i.e., X ⊆ Rn is a special Cartesian product of normed spaces), and take f : X 7→ Rn to be a continu-
ously differentiable vector-valued function. For i ∈ {1, 2, . . . ,m} with x = (x1, x2, . . . , xi, . . . , xm) ∈
X1 × · · · Xm and xi = (xi1, xi2, . . . , xini

), the block gradient matrix

∇if(x) ,









∂f1(x)
∂xi1

∂f2(x)
∂xi1

· · · ∂fn(x)
∂xi1

∂f1(x)
∂xi2

∂f2(x)
∂xi2

· · · ∂fn(x)
∂xi2

...
...

. . .
...

∂f1(x)
∂xini

∂f2(x)
∂xini

· · · ∂fn(x)
∂xini









is an ni × n matrix.
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Remark (Relationship to Jacobian) Assume that f has m vector-valued block component functions
so that f , (f1, f2, . . . , fm). That is, fj : X 7→ Rni with fj , (fj1, fj2, . . . , fjnj

) for each j ∈
{1, 2, . . . ,m}. For i, j ∈ {1, 2, . . . ,m} with x = (x1, x2, . . . , xi, . . . , xm) ∈ X1 × · · · × Xm and
xi = (xi1, xi2, . . . , xini

), the block gradient matrix

∇ifj(x) =










∂fj1(x)
∂xi1

∂fj2(x)
∂xi1

· · ·
∂fjni

(x)

∂xi1

∂fj1(x)
∂xi2

∂fj2(x)
∂xi2

· · ·
∂fjnj

(x)

∂xi2

...
...

. . .
...

∂fj1(x)
∂xini

∂fj2(x)
∂xini

· · ·
∂fjnj

(x)

∂xini










is an ni × nj matrix, and the block gradient matrix

∇if(x) =
[
∇if1(x) ∇if2(x) · · · ∇ifm(x)

]

is an ni × n matrix, and the gradient matrix

∇f(x) =








∇1f(x)
∇2f(x)

...
∇mf(x)








=
[
∇f1(x) ∇f2(x) · · · ∇fm(x)

]

=








∇1f1(x) ∇1f2(x) · · · ∇1fm(x)
∇2f1(x) ∇2f2(x) · · · ∇2fm(x)

...
... ∇ifj(x)

...
∇mf1(x) ∇mf2(x) · · · ∇mfm(x)








(D.1)

is the transpose of the n × n Jacobian of f . In the case of a continuously differentiable gradient,
the Hessian is symmetric, and so the Hessian will be equivalent to the Jacobian of the gradient. In
either case, the block gradient carves out blocks of the Jacobian of vector-valued functions defined
on Cartesian product spaces.

Remark (Relationship between Hessian and block gradients) Let g : X 7→ R be a scalar-valued
continuously differentiable function, and let f : X 7→ Rn be defined as its vector-valued continuously
differentiable gradient. That is, let f(x) , ∇g(x) for all x ∈ X . Then f = (f1, f2, . . . , fm) where
fi(x) = ∇ig(x) for all x ∈ X . Further, by Expression (D.1), for x ∈ X , the Hessian

∇2g(x) = ∇∇g(x) =








∇1∇g(x)
∇2∇g(x)

...
∇m∇g(x)








=
[
∇∇1g(x) ∇∇2g(x) · · · ∇∇mg(x)

]

=








∇2
11g(x) ∇2

12g(x) · · · ∇2
1mg(x)

∇2
21g(x) ∇2

22g(x) · · · ∇2
2mg(x)

...
... ∇2

ijg(x)
...

∇2
m1g(x) ∇2

m2g(x) · · · ∇2
mmg(x)








(D.2)
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where
∇2

ijg(x) , ∇i∇jg(x)

is the ni × nj block of ∇2g(x) located at the ith row block the jth column block. For example, if
each block is a subset of R (i.e., m = n and ni = 1 for all i ∈ {1, 2, . . . ,m}), ∇2

ijg is the ith row

and the jth column of Hessian ∇2g.

D.3 Theory of contractions

Convergence analysis of iterative algorithms is simplified when the algorithms contract in some
way. Here, contraction mappings are defined and theoretical results are given.

Definition D.8. (Contraction mapping and its modulus) Suppose that X ,Y ⊆ Rn, T : X 7→ Y,
and

‖T (x)− T (y)‖ ≤ α‖x− y‖ for all x, y ∈ X

where ‖·‖ is a norm endowed to the corresponding subspace and α ∈ [0, 1). The mapping T is a
contraction mapping and α is the modulus of T .

Remark (Lipschitz continuity of contraction mappings) Any contraction mapping T is automati-
cally Lipschitz continuous.

Definition D.9. (Block contraction over Cartesian product sets) Take Assumption D.1 for granted
(i.e., X ⊆ Rn is a special Cartesian product of normed spaces), and assume that Rn is endowed
with the block-maximum norm ‖·‖. A contraction T : X 7→ X under this block-maximum norm
with modulus α is called a block contraction.

Definition D.10. (Block component of a block contraction) Take Assumption D.1 for granted
(i.e., X ⊆ Rn is a special Cartesian product of normed spaces), and assume that Rn is endowed
with the block-maximum norm ‖·‖. For a block contraction T : X 7→ X , a mapping Ti : X 7→ Xi

can be defined as the ith block component of T . That is, for x ∈ X ,

T (x) , (T1(x), T2(x), . . . Tm(x)).

Proposition D.1. (Block component is a contraction) Take Assumption D.1 for granted (i.e.,
X ⊆ Rn is a special Cartesian product of normed spaces), and assume that Rn is endowed with the
block-maximum norm ‖·‖. Mapping T : X 7→ X is a contraction with modulus α if and only if the
block component Ti : X 7→ Xi is itself a contraction with modulus α for every i ∈ {1, 2, . . . ,m}.

Proof of Proposition D.1 is omitted for brevity.

Definition D.11. (Contracting iterations) Suppose that X ⊆ Rn, T : X 7→ X is a contraction
mapping, and the sequence {x(t)} is such that

x(t+ 1) = T (x(t)) where t ∈ W. (D.3)

The iteration in Expression (D.3) is a contracting iteration.

Definition D.12. (Fixed point) Suppose that X ⊆ Rn, and let there be a mapping T : X 7→ X .
Any vector x∗ ∈ X satisfying x∗ = T (x∗) is a fixed point of T .

Remark (Algorithm to find fixed points of contractions) The contracting iteration corresponding
to contraction T may be viewed as an algorithm for finding the fixed point of T .
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Proposition D.2. (Convergence of contracting iterations) If X ⊆ Rn is closed and convex and
T : X 7→ X is a contraction with modulus α ∈ [0, 1), then

(a) (Existence and uniqueness of fixed points) The mapping T has a unique fixed point x∗ ∈ X .

(b) (Geometric convergence) For every initial vector x(0) ∈ X , the sequence {x(t)} generated by
the contracting iteration x(t + 1) = T (x(t)) converges to x∗ geometrically with rate α. In
particular,

‖x(t)− x∗‖ ≤ αt‖x(0)− x∗‖ for all t ∈ W.

Proof of Proposition D.2 is given by Bertsekas and Tsitsiklis [8].

D.3.1 Simple linear mapping

The following theorems each take Assumption D.1 for granted (i.e., X ⊆ Rn is a special Cartesian
product of normed spaces) and provide contracting conditions for the mapping T : X 7→ Rn where,
for each i ∈ {1, 2, . . . ,m}, ith block-component Ti : X 7→ Rni is of the form

Ti(x) , xi − σG−1
i fi(x) for all x ∈ X (D.4)

where fi : X 7→ Rni is a function, Gi is a symmetric positive definite matrix, and σ > 0 is a scalar.
Mappings of this form are used in Section D.5.2.

Proposition D.3. (Block-maximum contraction on convex sets) Take Assumption D.1 for granted
(i.e., X ⊆ Rn is a special Cartesian product of normed spaces), and assume that Rn is endowed
with the block-maximum norm ‖·‖. For each i ∈ {1, 2, . . . ,m}, let Gi be an invertible symmetric
matrix of dimensions ni × ni. Also let f : Rn 7→ Rn be a continuously differentiable function
defined by f , (f1, f2, . . . , fm) where fi : R

n 7→ Rni is a continuously differentiable function for
each i ∈ {1, 2, . . . ,m}. Take I to be the identity matrix and σ ∈ R to be some scalar. Assume that
X is convex and that there exists a scalar α ∈ [0, 1) such that

∥
∥
∥I − σG−1

i (∇ifi(x))
⊤
∥
∥
∥
ii
+
∑

j∈{1,2,...,n}
j 6=i

∥
∥
∥σG−1

i (∇jfi(x))
⊤
∥
∥
∥
ij
≤ α (D.5)

for all x ∈ X and i ∈ {1, 2, . . . , n} where ‖·‖ij is the induced matrix norm from Definition D.2
acting on matrices of dimension ni × nj; that is, ‖A‖ij , max{‖Ax‖i : x ∈ Rnj , ‖x‖j = 1}. Then
the mapping T : X 7→ Rn defined by block component

Ti(x) , xi − σG−1
i fi(x) for all i ∈ {1, 2, . . . ,m} (D.6)

is a contraction under the block-maximum norm ‖·‖ with modulus α.

Proof of Proposition D.3 is given by Bertsekas and Tsitsiklis [8].

Proposition D.4. (Block-maximum contraction for scalar blocks of convex sets) Take Assump-
tion D.1 for granted (i.e., X ⊆ Rn is a special Cartesian product of normed spaces), and assume
that Rn is endowed with the block-maximum norm ‖·‖. Also assume that:

(i) ni = 1 for all i ∈ {1, 2, . . . ,m} (i.e., assume m = n). That is, assume each Cartesian block
factor is one dimensional.

(ii) The set X is convex and f : X 7→ Rn is continuously differentiable.
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(iii) There exists positive constant K > 0 such that

∇ifi(x) ≤ K for all x ∈ X and i ∈ {1, 2, . . . , n}.

(iv) There exists some β > 0 such that

∑

j∈{1,2,...,n}
j 6=i

|∇jfi(x)| ≤ ∇ifi(x)− β for all x ∈ X and i ∈ {1, 2, . . . , n}.

Then the mapping T : X 7→ Rn defined by T (x) , x − σf(x) with 0 < σ < 1/K is a contraction
with respect to the maximum norm.

Proof of Proposition D.4 is given by Bertsekas and Tsitsiklis [8].

Remark (Impact of step size on convergence) As shown in the proof of Proposition D.4, a large step
size σ will reduce the contraction modulus and lead to faster convergence. The size of σ is limited
by the reciprocal of the constant K which is an upper bound for each block gradient. Hence, the
steeper the gradients, the faster convergence is possible.

The following theorems handle the simple linear mapping in Expression (D.4) when matrix Gi

is the identity matrix I and each Cartesian factor block is endowed with the quadratic (i.e., ℓ2)
norm.

D.4 Constrained optimization

The following theory is motivated by the problem of minimizing a cost function F : X 7→ R where
X ⊆ Rn is non-empty, closed, and convex. In most cases, X ⊂ Rn, and so F is being minimized
subject to constraints that are characterized by subset X . Hence, X will be called the constraint
set. The orthogonal projection methods discussed in Section D.4.1 allow for the design of iterative
algorithms that must work within convex constraint sets.

Proposition D.5. (Optimality conditions)

(a) If a vector x ∈ X minimizes F over X , then (y − x)⊤∇F (x) ≥ 0 for every y ∈ X .

(b) If F is also convex on the set X , then condition (a) is also sufficient for x to minimize F over
X .

Proof of Proposition D.5 is given by Bertsekas and Tsitsiklis [8].

Remark (Geometric interpretation) Condition (a) in Proposition D.5 states that at the minimum
of F on X , displacement and gradient vectors are always pointing in roughly the same direction.
It is necessary to climb the gradient in order to move away from the minimum.

D.4.1 Orthogonal projections

To deal with constraints, methods for iterating within the constrained convex set need to be intro-
duced.

Proposition D.6. (Projection theorem)

(a) For every x ∈ Rn, there exists a unique [x]+ ∈ X that minimizes ‖z − x‖2.
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(b) Given some x ∈ Rn, a vector z ∈ X is equal to [x]+ if and only if (y − z)⊤(x− z) ≤ 0 for all
y ∈ X .

(c) The mapping f : Rn 7→ X defined by f(x) , [x]+ is continuous and non-expansive with respect
to the ℓ2-norm. That is, ‖[x]+ − [y]+‖2 ≤ ‖x− y‖2 for all x, y ∈ R2.

Proof of Proposition D.6 is given by Bertsekas and Tsitsiklis [8].

Definition D.13. (Orthogonal projection) For a vector x ∈ Rn, the orthogonal projection of x
onto convex set X is

[x]+ , arg min
z∈X

‖z − x‖2.

Remark (Orthogonal projection is well defined) By Proposition D.6, the orthogonal projection is
well defined.

Remark (Interpretation) Given a convex set C ⊆ X , a point x ∈ X , and the orthogonal projection
[x]+ of x onto C,

• [x]+ is colinear with a line that is orthogonal to a hypersurface that is tangent to C at the
point [x]+ ∈ C.

• [x]+ minimizes the 2-norm (i.e., “squared”) distance between C and x.

Definition D.14. (Interval) An interval I ⊆ R has the property that if x ∈ I, y ∈ I, and there
exists some z ∈ R such that x ≤ z ≤ y then z ∈ I.

Proposition D.7. (Projection onto closed interval) For x ∈ R, the closed interval I, and the
orthogonal projection [x]+ onto I,

(a) If x ∈ I, then [x]+ = x.

(b) If inf I = a and x < a, then [x]+ = a.

(c) If sup I = b and x > b, then [x]+ = b.

Proof of Proposition D.7 is omitted for brevity.

Remark (Closed-form projection onto closed interval) By Proposition D.7, for x ∈ R and closed
interval I , [a, b],

[x]+ = max{a,min{b, x}}.

Proposition D.8. (Projection onto product space) Take Assumption D.1 for granted (i.e., con-
straint set X ⊆ Rn is a special Cartesian product), and assume that nonempty subspace Xi ⊆ Rni

is closed and convex for each i ∈ {1, . . . ,m}. The orthogonal projection [x]+ of x ∈ Rn onto X is
such that

[x]+ = ([x1]
+
1 , [x2]

+
2 , . . . , [xm]+m), (D.7a)

where
[xi]

+
i , arg min

zi∈Xi

‖zi − xi‖2 (D.7b)

is the orthogonal projection of xi ∈ Rni onto Xi for each i ∈ {1, 2, . . . ,m}.

Proof of Proposition D.8 is omitted for brevity.
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Remark (Projection onto product of closed intervals) By Proposition D.8, when X is the Cartesian
product of closed intervals I1 ×I2 × · · · × In, the projection of x ∈ Rn onto X is obtained by using
the simple result of Proposition D.7 to project xi onto Ii for each i ∈ {1, 2, . . . , n}.

Remark (Parallelization of product projection) Because projection onto a Cartesian product of n in-
tervals can be completed with n simple, separate, and independent scalar projections, computation
of [x]+ can be done in parallel on n independent agents.

D.5 Variational inequalities and parallel implementation

Constrained and unconstrained optimization, like the motivating problem for the theory in Sec-
tion D.4, can be formulated as a variational inequality problem, and these problems can be easily
parallelized under special conditions on the constraint set X , which will be assumed to be nonempty,
closed, and convex.

Definition D.15. (Variational inequality) Given a set X and a function f : X 7→ Rn, the varia-
tional inequality problem VI(X , f) finds a vector x∗ ∈ X such that

(x− x∗)⊤f(x∗) ≥ 0 for all x ∈ X . (D.8)

It will be assumed that set X is nonempty, closed, and convex.

Proposition D.9. (Decomposition lemma) Take Assumption D.1 for granted (i.e., constraint
set X ⊆ Rn is a special Cartesian product), and assume that nonempty subspace Xi ⊆ Rni is
closed and convex for each i ∈ {1, . . . ,m}. Also let f : X 7→ Rn be expressed so that f(x) ,

(f1(x), f2(x), . . . , fm(x)) where component fi : X 7→ Rni for each i ∈ {1, 2, . . . ,m}. A vector
x∗ ∈ X solves the variational inequality VI(X , f) if and only if

(xi − x∗i )
⊤fi(x

∗) ≥ 0 for all xi ∈ Xi (D.9)

for all i ∈ {1, 2, . . . ,m}.

Proof of Proposition D.9 is given by Bertsekas and Tsitsiklis [8].

D.5.1 Motivation from game theory

Definition D.16. (Nash game) Take Assumption D.1 for granted (i.e., constraint set X ⊆ Rn is
a special Cartesian product), and assume that nonempty subspace Xi ⊆ Rni is closed and convex
for each i ∈ {1, . . . ,m}. Consider m players in a game. Each player i ∈ {1, 2, . . . ,m} chooses a
strategy xi ∈ Xi that either is penalized by an amount equal to Fi(x) (or, equivalently, is rewarded
by an amount equal to −Fi(x)) where Fi : X 7→ R is a continuously differentiable function. A Nash
equilibrium x∗ = (x∗1, x

∗
2, . . . , x

∗
m) ∈ X is such that

Fi(x
∗
1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
m) ≤ Fi(x

∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m) for all xi ∈ Xi (D.10)

for all i ∈ {1, 2, . . . ,m}. In other words, when the m players are in Nash equilibrium, no single
player can improve their utility (i.e., reduce their penalty or increase their reward) by unilaterally
deviating from the equilibrium.
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Remark (Comparing Nash equilibria to optimization) A Nash equilibrium represents a balance
among the conflicting interests of all players. In principle, each player may be able to achieve
better than the utility at a Nash equilibrium, but that increase is not possible without another
player choosing to make a play that returns less utility. A Nash equilibrium represents the outcome
of independent players choosing to do as well as possible without any explicit coordination with
other players.

Remark (Significance of Cartesian product requirement) A Nash game requires each player to be
able to make independent actions, and so the game space is a Cartesian product. If players are able
to communicate and move in tandem, the game cannot be described using Nash equilibria unless
groups of tandem players are disjoint; in that case, each group must be considered to be a larger
player with a higher dimensional play space.

Proposition D.10. (Nash game as variational inequality) Take Assumption D.1 for granted (i.e.,
constraint set X ⊆ Rn is a special Cartesian product), and assume that nonempty subspace Xi ⊆
Rni is closed and convex for each i ∈ {1, . . . ,m}. The corresponding m-player Nash game is a
variational inequality VI(X , f) with

f(x) , (f1(x), f2(x), . . . , fm(x))

where
fi(x) , ∇iFi(x)

for each x ∈ X and each i ∈ {1, 2, . . . ,m}.

Proof of Proposition D.10. By the optimality conditions from Proposition D.5, for player i ∈
{1, 2, . . . ,m} whose play is independent of other play j with j 6= i, play x∗i ∈ Xi is optimal over
convex set Xi if and only if

(xi − x∗i )
⊤∇iFi(x

∗) for all xi ∈ Xi

where ∇iFi(x) is the block gradient from Definition D.7. This form matches Expression (D.9) from
Proposition D.9 (i.e., the decomposition lemma).

D.5.2 Projection algorithm

Because of the non-expansive and continuous properties of the orthogonal projection discussed in
Proposition D.6(c), the projection algorithm is a special case of the simple linear mapping discussed
in Section D.3.1.

Definition D.17. (Projection iteration) The projection iteration, defined by

x(t+ 1) = Tp(x(t)) , [Rp(x(t))]
+ , [x(t)− σf(x(t))]+ for all t ∈ W (D.11)

where [·]+ is the orthogonal projection onto set X and step size scalar σ > 0, will be used to
computationally find solutions to the variational inequality problem VI(X , f).

Proposition D.11. (Fixed point characterization of solutions) Suppose scalar σ > 0. A vector
x∗ ∈ X is a solution of VI(X , f) if and only if Tp(x

∗) = x∗ where Tp is the mapping defined in
Expression (D.11).

Proof of Proposition D.11 is given by Bertsekas and Tsitsiklis [8].
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D.6 Totally asynchronous iterative distributed algorithms

Here, sufficient conditions for the convergence of a totally asynchronous iterative algorithm are
given.

Assumption D.2. (Distributed block topology) Let X be the Cartesian product of the m ∈ N

given nonempty sets X1, X2, . . . , Xm. That is,

X , X1 ×X2 × · · · × Xm

so that for each x ∈ X ,
x , (x1, x2, . . . , xm)

where xi ∈ Xi for each i ∈ {1, 2, . . . ,m}. Assume that X has an appropriate notion of convergence
defined (e.g., it is a Hausdorff topological space).

Definition D.18. (Totally asynchronous distributed iterations) Take Assumption D.2 for granted.
Let f : X 7→ X be a function with ith block component fi : X 7→ Xi so that

f(x) , (f1(x), f2(x), . . . , fm(x))

for all x ∈ X . Assume that there is an element x∗ ∈ X that is a fixed point of f . That is,

x∗ = f(x∗) and x∗i = fi(x
∗) for all i ∈ {1, 2, . . . ,m}.

Let T , W be the indices of a sequence of physical times. The system state trajectory x(t) ,

(x1(t), x2(t), . . . , xn(t)) is defined for all t ∈ T . For each i ∈ {1, 2, . . . ,m}, there is a subset T i ⊆ T
representing indices of physical times corresponding to when block i computes its next iteration.
Additionally, for each i, j ∈ {1, 2, . . . ,m} and t ∈ T , there is an index

τ ij(t) ∈ T such that 0 ≤ τ ij(t) ≤ t (D.12a)

of the least-outdated version of system state block xj(t) available to block i at time t. Hence, each
block i ∈ {1, 2, . . . ,m} has access to an outdated state estimate

xi(t) ,
(
xi1(t), x

i
2(t), . . . , x

i
m(t)

)
,
(
x1(τ

i
1(t)), x2(τ

i
2(t)), . . . , xm(τ im(t))

)
(D.12b)

for each t ∈ T . So, for all t ∈ T , the system state trajectory sequence {x(t)} is generated by the
totally asynchronous distributed iteration (TADI)

xi(t+ 1) =

{

fi(x
i(t))) if t ∈ T i,

xi(t) if t /∈ T i
(D.12c)

where x(t) = (x1(t), x2(t), . . . , xn(t)).

Assumption D.3. (Total asynchronism) Take Assumption D.2 for granted. For each i ∈ {1, 2, . . . ,m},

(i) The set T i used in Expression (D.12c) is infinite (i.e., |T i| = |T | = |N|).

(ii) If the sequence {tk} generated by taking tk ∈ T i is such that limk→∞ tk = ∞, then limk→∞ τ ij(tk) =
∞ for all j ∈ {1, 2, . . . ,m}.
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Remark (Inferior limit of update times is infinite) Under Assumption D.3, for all i, j ∈ {1, 2, . . . ,m},

lim inf
t→∞

τ ij(t) = ∞,

and thus
lim sup
t→∞

τ ij(t) = lim inf
t→∞

τ ij(t) = lim
t→∞

τ ij(t) = ∞.

Proposition D.12. (TADI limits are fixed points) Take Assumptions D.2 and D.3 for granted
and let function f : X 7→ X be as in Definition D.18. Assume that:

(i) For each i ∈ {1, 2, . . . ,m}, there is a sequence of nonempty sets {Xi(k)}k∈W where

· · · ⊂ Xi(k + 1) ⊂ Xi(k) ⊂ · · · ⊂ Xi(0) ⊆ Xi. (D.13)

Hence, for all k ∈ W, there exists nonempty product set

X (k) , X1(k)×X2(k)× · · · × Xm(k), (D.14)

and
· · · ⊂ X (k + 1) ⊂ X (k) ⊂ · · · ⊂ X (0) ⊆ X .

(ii) For all k ∈ W,
f(x) ∈ X (k + 1) for all x ∈ X (k). (D.15)

Additionally, if {yk} is a sequence such that yk ∈ X (k) for every k ∈ W, then every limit point

of {yk} is a fixed point of f .

If the initial x(0) ∈ X (0), then:

(a) For all k ∈ W, there exists a t′k ∈ W such that x(t) ∈ X (k) for all t ≥ t′k.

(b) For all k ∈ W, there exists a t∗k ∈ W such that t∗k ≥ t′k and, for all i ∈ {1, 2, . . . ,m},
xi(t) ∈ X (k) for all t ≥ t∗k.

(c) Every limit point of the sequence {x(t)} generated by the totally asynchronous distributed
iteration in Expression (D.12) is a fixed point of f .

Proof of Proposition D.12 motivated by Bertsekas and Tsitsiklis [8]. By the assumption that x(0) ∈
X (0), then for each i ∈ {1, 2, . . . ,m},

xi(0) = (x1(τ
i
1(0)), x2(τ

i
2(0)), . . . , xm(τ im(0))) = (x1(0), x2(0), . . . , xm(0)) = x(0) ∈ X (0). (D.16)

Let t0 ∈ T , and assume that both x(t) ∈ X (0) and xi(t) ∈ X (0) for all t ≤ t0 and all i ∈
{1, 2, . . . ,m}. Then, by Expressions (D.14) and (D.15),

x(t0 + 1) = ( f1(

∈X (0)
︷ ︸︸ ︷

x1(t0) )
︸ ︷︷ ︸

∈X1(1)
⊂X1(0)

, f2(

∈X (0)
︷ ︸︸ ︷

x2(t0) )
︸ ︷︷ ︸

∈X2(1)
⊂X2(0)

, . . . , fm(

∈X (0)
︷ ︸︸ ︷

xm(t0) )
︸ ︷︷ ︸

∈Xm(1)
⊂Xm(0)

) ∈ X (1) ⊂ X (0).

Additionally, for all i ∈ {1, 2, . . . ,m},

xi(t0 + 1) = (x1(

∈{0,...,t0+1}
︷ ︸︸ ︷

τ i1(t0 + 1) )
︸ ︷︷ ︸

∈X1(0)

, x2(

∈{0,...,t0+1}
︷ ︸︸ ︷

τ i2(t0 + 1) )
︸ ︷︷ ︸

∈X2(0)

, . . . , xm(

∈{0,...,t0+1}
︷ ︸︸ ︷

τ im(t0 + 1) )
︸ ︷︷ ︸

∈Xm(0)

) ∈ X (0)
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by Expressions (D.14), (D.15), and the assumption about t0. As shown in Expression (D.16), the
assumption is certainly true for t0 = 0. So, by induction, x(t) ∈ X (0) and xi(t) ∈ X (0) for all
i ∈ {1, 2, . . . ,m} and all t ∈ T .

For some k ∈ W, assume that there is a time tk ∈ W such that for all t ∈ T with t ≥ tk,

(i) x(t) ∈ X (k).

(ii) xi(t) ∈ X (k) for all i ∈ {1, 2, . . . ,m}.

Take i ∈ {1, 2, . . . ,m}. Let ti , min{t ∈ T i : t ≥ tk}. That is, ti is the first element of T i such
that ti ≥ tk. Because of Assumption D.3 (i.e., T i is an infinite subset of T , W), ti is well defined.
Then, by Expression (D.15),

xi(t
i + 1) = fi( x

i(t)
︸︷︷︸

∈X (k)

) ∈ Xi(k + 1).

However, if there exists some t ∈ T such that xi(t+ 1) ∈ Xi(k + 1), then

xi(t+ 2) =







fi(x
i(t+ 1)
︸ ︷︷ ︸

∈X (k+1)

) ∈ Xi(k + 2) ⊂ Xi(k + 1) if t+ 1 ∈ T i,

xi(t+ 1) ∈ X (k + 1) if t+ 1 /∈ T i







∈ X (k + 1).

Hence, because xi(t
i + 1) ∈ Xi(k + 1), then xi(t) ∈ Xi(k + 1) for all t ∈ T with t ≥ ti + 1. Let

t′k , max{ti+1 : i ∈ {1, 2, . . . ,m}}. Then, for all t ≥ t′k, xj(t) ∈ Xj(k+1) for each j ∈ {1, 2, . . . ,m}.
Further, by Expression (D.14),

x(t) = ( x1(t)
︸ ︷︷ ︸

∈X1(k+1)

, x2(t)
︸ ︷︷ ︸

∈X2(k+1)

, . . . , xm(t)
︸ ︷︷ ︸

∈Xm(k+1)

) ∈ X (k + 1) for all t ≥ t′k.

Additionally, by Assumption D.3 (i.e., lim inft→∞ τ ij(t) = ∞), there is a sufficiently large t∗k ≥ t′k
such that τ ij(t) ≥ t′k for all i, j ∈ {1, 2, . . . ,m} and all t ∈ T with t ≥ t∗k. So, for all i ∈ {1, 2, . . . ,m},

xi(t) = (x1(

≥t′k
︷︸︸︷

τ i1(t) )
︸ ︷︷ ︸

∈X1(k+1)

, x2(

≥t′k
︷︸︸︷

τ i2(t) )
︸ ︷︷ ︸

∈X2(k+1)

, . . . , xm(

≥t′k
︷ ︸︸ ︷

τ im(t) )
︸ ︷︷ ︸

∈Xm(k+1)

) ∈ X (k + 1) for all t ≥ t∗k ≥ t′k.

Hence, by induction, because x(t) ∈ X (0) (i.e., with k = 0) and, for all t ∈ T with t ≥ 0 and all
i ∈ {1, 2, . . . ,m}, xi(t) ∈ X (0), then the assumption is true for all k ≥ 0. Hence, conditions (a)
and (b) are true under these assumptions.

Assume that x(0) ∈ X (0) and x∗ is a limit point of the sequence {x(t)}. For each k ∈ W,
let tk ∈ T be the time in which x(t) ∈ Xk for all t ≥ tk. Because {x(t)} is convergent, the
subsequence {x(tk)} is also convergent. However, {x(tk)} is a sequence such that x(tk) ∈ X (k) for
all k ∈ W. Hence, the limit point x∗ is a fixed point of f by the second half of condition (ii). Hence,
condition (c) is true under these assumptions.

Remark (Interpretation of Proposition D.12) By conditions (a) and (b), if {X(k)}k∈W is sequence
that converges to x∗ ∈ X , then {x(t)}t∈T and {xi(t)}t∈T for all i ∈ {1, 2, . . . ,m} are also sequences
that converge to x∗. By condition (c), if x∗ ∈ X is a point on which sequence {X(k)}k∈W converges,
then x∗ is a fixed point of f (i.e., x∗ = f(x∗)).
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Proposition D.13. (Existence of TADI limit point) Take the assumptions of Proposition D.12
for granted. Additionally, take x∗ ∈ X . Assume that for any set N ⊆ X such that x∗ ∈ O ⊆ N
where O is an open set, there exists a k ∈ W such that X (k) ⊆ N . Then, as t → ∞, x(t) → x∗

and, for all i ∈ {1, 2, . . . ,m}, xi(t) → x∗. Additionally, the limit point x∗ is a fixed point of f (i.e.,
x∗ = f(x∗)).

Proof of Proposition D.13. Take open set O such that x∗ ∈ O. The assumption states that there
exists a k ∈ W such that X (k) ⊆ O. However, by Proposition D.12(a), there exists a t∗k ∈ N such
that, for all t ≥ t∗k, x(t) ∈ X (k) ⊆ O and xi(t) ∈ X (k) ⊆ O for all i ∈ {1, 2, . . . ,m}. Hence, as
t → ∞, x(t) → x∗ and xi → x∗ for all i ∈ {1, 2, . . . ,m}. Additionally, by Proposition D.12(c), the
limit point x∗ is a fixed point of f (i.e., x∗ = f(x∗)).

Proposition D.14. (Maximum norm contraction mappings) Take Assumption D.1 for granted
(i.e., X ⊆ Rn is a special Cartesian product of normed spaces), and assume that Rn is endowed
with the block-maximum norm ‖·‖. Suppose that f : X 7→ Rn is a contraction mapping with respect
to the block-maximum norm. Convergence of f to its unique fixed point x∗ ∈ X is guaranteed by
Propositions D.12 and D.13.

Proof of Proposition D.14 motivated by Bertsekas and Tsitsiklis [8]. By Proposition D.2(a), there
exists a unique fixed point x∗ ∈ X of contraction f (i.e., x∗ = f(x∗)). For each k ∈ W, define the
set

X (k) , {x ∈ X : ‖x− x∗‖ ≤ αk‖x(0)− x∗‖}

= {(x1, x2, . . . , xm) ∈
m∏

i=1

Xi : ‖xi − x∗i ‖i ≤ αk‖x(0)− x∗‖ for all i ∈ {1, 2, . . . ,m}}

=

m∏

i=1

{xi ∈ Xi : ‖xi − x∗i ‖i ≤ αk‖x(0)− x∗‖}
︸ ︷︷ ︸

,Xi(k)

where α ∈ [0, 1) is the contraction modulus of f and x(0) is the initial TADI system state. Because
α ∈ [0, 1), Xi(k+1) ⊂ Xi(k) for all i ∈ {1, 2, . . . ,m} and all k ∈ W, and so Expression (D.14) holds.
By Proposition D.2(b), if x ∈ X (k) then f(x) ∈ X (k + 1) for all k ∈ W, and so Expression (D.15)
holds. Additionally, x∗ ∈ X (k) for all k ∈ W. Hence, the collection of sets {X (k) : k ∈ W} meets
the requirements of Proposition D.12. Further, for any open ball Bε(x

∗) , {x ∈ X : ‖x− x∗‖ < ε}
around x∗, there exists a k ∈ W such that X (k) ⊆ Bε(x

∗). So, by Proposition D.13, convergence of
f to fixed point x∗ is guaranteed.

47



REFERENCES

References

[1] E. Altman, A. A. Kherani, P. Michiardi, and R. Molva. Non-cooperative forwarding in ad-hoc
networks. In Proceedings of Networking, volume 3462 of Lecture Notes in Computer Science,
pages 486–498, 2005.

[2] E. Altman, A. Kumar, D. Kumar, and R. Venkatesh. Cooperative and non-cooperative control
in IEEE 802.11 WLANs. In Proceedings of the 19th International Teletraffic Congress, Beijing,
August 29 – September 2, 2005.

[3] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren. An opportunity cost
approach for job assignment in a scalable computing cluster. IEEE Transactions on Parallel
and Distributed Systems, 11(7):760–768, July 2000. doi: 10.1109/71.877834.
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[33] R. T. Maheswaran, O. Ç. Imer, and T. Başar. Agent mobility under price incentives. In
Proceedings of the 38th IEEE Conference on Decision and Control, volume 4, pages 4020–
4025, Phoenix, Arizona, USA, December 7–10, 1999. doi: 10.1109/CDC.1999.827989.

[34] A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford University
Press, New York, 1995.

[35] M. Milinski. TIT FOR TAT in sticklebacks and the evolution of cooperation. Nature, 325
(6103):433–435, January 29, 1987. doi: 10.1038/325433a0.

[36] W. Nicholson. Microeconomic Theory: Basic Principles and Extensions. Dryden Press, Fort
Worth, TX, fifth edition, 1992.

[37] M. A. Nowak. Five rules for the evolution of cooperation. Science, 314(5805):1560–1563,
December 8, 2006. doi: 10.1126/science.1133755.

[38] M. A. Nowak and R. M. May. Evolutionary games and spatial chaos. Nature, 359(6398):
826–829, October 29, 1992. doi: 10.1038/359826a0.

[39] H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak. A simple rule for the evolution of
cooperation on graphs. Nature, 441(7092):502–505, 2006. doi: 10.1038/nature04605.

[40] A. Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly &
Associates, Sebastopol, CA, 2001. ISBN 978-0-596-00110-0.

[41] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, Cambridge, MA,
1994. ISBN 0-262-15041-7.

[42] J. R. Perkins and P. R. Kumar. Stable, distributed, real-time scheduling of flexible manu-
facturing/assembly/disassembly systems. IEEE Transactions on Automatic Control, 34(2):
139–148, February 1989. doi: 10.1109/9.21085.

[43] D. Qiu and R. Srikant. Modeling and performance analysis of BitTorrent-like peer-to-peer
networks. In R. Yavatkar, E. W. Zegura, and J. Rexford, editors, Proceedings of the ACM
SIGCOMM 2004 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pages 367–378, Portland, Oregon, USA, August 30 – September 3,
2004. ISBN 1-58113-862-8. doi: 10.1145/1015467.1015508.

[44] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford. Xenoservers: accountable ex-
ecution of untrusted programs. In Proceedings of the Seventh Workshop on Hot Top-
ics in Operating Systems, pages 136–141, Rio Rico, Arizona, USA, March 28–30, 1999.
doi: 10.1109/HOTOS.1999.798390.

50

10.1145/295685.298136
http://dx.doi.org/10.1145/295685.298136
10.1038/nature03204
http://dx.doi.org/10.1038/nature03204
10.1109/CDC.1996.572647
http://dx.doi.org/10.1109/CDC.1996.572647
10.1109/CDC.1999.827989
http://dx.doi.org/10.1109/CDC.1999.827989
10.1038/325433a0
http://dx.doi.org/10.1038/325433a0
10.1126/science.1133755
http://dx.doi.org/10.1126/science.1133755
10.1038/359826a0
http://dx.doi.org/10.1038/359826a0
10.1038/nature04605
http://dx.doi.org/10.1038/nature04605
10.1109/9.21085
http://dx.doi.org/10.1109/9.21085
10.1145/1015467.1015508
http://dx.doi.org/10.1145/1015467.1015508
10.1109/HOTOS.1999.798390
http://dx.doi.org/10.1109/HOTOS.1999.798390


REFERENCES

[45] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York, NY, third edition,
1976.

[46] R. G. Smith. The contract net protocol: high-level communication and control in a dis-
tributed problem solver. IEEE Transactions on Computers, 29(12):1104–1113, December 1980.
doi: 10.1109/TC.1980.1675516.

[47] R. L. Trivers. The evolution of reciprocal altruism. Quarterly Review of Biology, 46(1):35–57,
March 1971. doi: 10.1086/406755.

[48] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S. Stornetta. Spawn:
a distributed computational economy. IEEE Transactions on Software Engineering, 18(2):
103–117, February 1992. doi: 10.1109/32.121753.

[49] J. E. White. Telescript technology: mobile agents. In D. Milojičić, F. Douglis, and R. Wheeler,
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